Question

A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60...

A 2.9-kg cart is attached to a horizontal spring for which the spring constant is 60 N/m . The system is set in motion when the cart is 0.27 m from its equilibrium position, and the initial velocity is 1.8 m/s directed away from the equilibrium position.

What is the amplitude of the oscillation?

What is the speed of the cart at its equilibrium position?

Homework Answers

Answer #1

Mass of the cart = m = 2.9 kg

Spring constant = k = 60 N/m

Initial displacement = X1 = 0.27 m

Initial velocity = V1 = 1.8 m/s

Amplitude of the oscillation = A

Speed of the cart at equilibrium position = V

Total mechanical energy of the system is equal to the sum of the potential energy of the spring and the kinetic energy of the cart.

Total mechanical energy at maximum displacement is equal to the potential energy of the spring.

kA2/2 = kX12/2 + mV12/2

kA2 = kX12 + mV12

(60)A2 = (60)(0.27)2 + (2.9)(1.8)2

A = 0.479 m

At the equilibrium point the total mechanical energy is converted into kinetic energy of the cart.

kA2/2 = mV2/2

kA2 = mV2

(60)(0.479)2 = (2.9)V2

V = 2.179 m/s

a) Amplitude of oscillation = 0.479 m

b) Speed of the cart at equilibrium position = 2.179 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant)...
A 0.150-kg cart is attached to an ideal spring with a force constant of (spring constant) of 3.58 N/m undergoes simple harmonic motion and has a speed of 1.5 m/s at the equilibrium position. At what distance from the equilibrium position are the kinetic energy and potential energy of the system the same?
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k =...
1. A mass 0.15 kg is attached to a horizontal spring with spring constant k = 100 N/m moves on a horizontal surface. At the initial moment in time, the mass is moving to the right at rate of 3.5 m/s and displacement of 0.2 m to the right of equilibrium. a) What is the angular frequency, period of oscillation, and phase constant? b) What is the amplitude of oscillation (Hint: Use energy.) and maximum speed of the spring-mass system?
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k...
A block with mass 0.382 kg is attached to a horizontal spring with spring constant k = 1.28 N/m on a frictionless surface. The block is pulled 0.753 m from equilibrium and released. (a) What is the amplitude of the block's motion? (b) What is its period? (c) How long after release does the block take to first return to its equilibrium position? (d) What is its speed at that position? {b. 3.43 s, d. 1.38 m/s} a) A=0.753m b)...
An undamped 1.55 kg horizontal spring oscillator has a spring constant of 32.6 N/m. While oscillating,...
An undamped 1.55 kg horizontal spring oscillator has a spring constant of 32.6 N/m. While oscillating, it is found to have a speed of 2.31 m/s as it passes through its equilibrium position. What is its amplitude ? of oscillation? What is the oscillator's total mechanical energy ?tot as it passes through a position that is 0.615 of the amplitude away from the equilibrium position?
An undamped 1.21 kg horizontal spring oscillator has a spring constant of 34.5 N/m. While oscillating,...
An undamped 1.21 kg horizontal spring oscillator has a spring constant of 34.5 N/m. While oscillating, it is found to have a speed of 2.43 m/s as it passes through its equilibrium position. What is its amplitude of oscillation? What is the oscillator\'s total mechanical energy as it passes through a position that is 0.675 of the amplitude away from the equilibrium position?
61) The position of a 0.75-kg cart attached to a spring can be given by the...
61) The position of a 0.75-kg cart attached to a spring can be given by the equation . (a) Plot position-time, velocity-time, and acceleration-time graphs representing the motion of the cart. (b) Draw a force diagram showing all forces exerted on the cart when it is at its maximum displacement away from equilibrium. (c) Determine the force the spring exerts on the cart at that displacement. no equation was given, sorry :(
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A...
A particle with mass 2.61 kg oscillates horizontally at the end of a horizontal spring. A student measures an amplitude of 0.923 m and a duration of 129 s for 65 cycles of oscillation. Find the frequency, ?, the speed at the equilibrium position, ?max, the spring constant, ?, the potential energy at an endpoint, ?max, the potential energy when the particle is located 68.5% of the amplitude away from the equiliibrium position, ?, and the kinetic energy, ?, and...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k...
An object with mass 2.5 kg is attached to a spring with spring stiffness constant k = 270 N/m and is executing simple harmonic motion. When the object is 0.020 m from its equilibrium position, it is moving with a speed of 0.55 m/s. (a) Calculate the amplitude of the motion. ____m (b) Calculate the maximum velocity attained by the object. [Hint: Use conservation of energy.] ____m/s
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced,...
If a 1 kg object on a horizontal, frictionless surface is attached to a spring, displaced, and then released, it will oscillate. If it is displaced 0.120 m from its equilibrium position and released with zero initial speed. After 0.8 s its displacement is found to be 0.120 m on the opposite side, and it has passed the equilibrium position once during this interval. Find the amplitude, the period, the frequency, the angular frequency and the spring constant.
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT