Question

Collision A muon and an antimuon are moving in opposite directions with velocities of -0.7 c...

    1. Collision

A muon and an antimuon are moving in opposite directions with velocities of -0.7 c and 0.7 c, respectively. When they collide, they can annihilate each other and turn into two identical photons. Both muon and antimuon have a mass of 105.66 MeV/c2.
What is the total energy before the collision?

______???


What is the energy of each photon?

______???


What is the wavelength of each photon?

_____???

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
We consider a collision of a muon with a proton. The muon has a momentum of...
We consider a collision of a muon with a proton. The muon has a momentum of 160 GeV/c, the proton a momentum of 190 GeV/c . a) With the mass of the proton given by mp = 938.27 MeV c 2 and the mass of the muon me = 105.66 MeV c 2 , determine the total energy of the muon and of the proton. b) Assuming that the muon and the proton collide head on (proton mometum along positive...
Two objects moving with a speed v travel in opposite directions in a straight line. The...
Two objects moving with a speed v travel in opposite directions in a straight line. The objects stick together when they collide, and move with a speed of v/6 after the collision. (a) What is the ratio of the final kinetic energy of the system to the initial kinetic energy? (b) What is the ratio of the mass of the more massive object to the mass of the less massive object?
A K+-meson (with a rest mass of 493.7 MeV/c2) initially at rest decays into a μ+...
A K+-meson (with a rest mass of 493.7 MeV/c2) initially at rest decays into a μ+ (positive muon with rest mass of 105.7 MeV/c2), Two photons and a neutrino (assume exactly zero rest mass - not quite true). The Muon is observed to move along the x-axis with momentum 100MeV/c. The two photons are observed to have identical energies but opposite directions along the positive and negative y-axes. The neutrino (not shown) is unseen. Find the energies of the photons.Hint:...
Consider a particle and its anti-particle, both of mass m =9.1×10−31 kg, which collide with negligible...
Consider a particle and its anti-particle, both of mass m =9.1×10−31 kg, which collide with negligible kinetic energy with each other and annihilate to produce two photons of equal energy. Calculate the energy E in keV and the wavelength λ in pm (pico-meters) of one photon
Two protons (resting mass M=1.67*10-27kg) move in opposite directions at the same rate. After collision, the...
Two protons (resting mass M=1.67*10-27kg) move in opposite directions at the same rate. After collision, the protons are retained, but the collision results in a new particle having a rest mass of m=2.75*10-28kg. 1a) Calculate the kinetic energy of the proton in MeV
An electron and a positron are moving toward each other with equal speeds of 3 x...
An electron and a positron are moving toward each other with equal speeds of 3 x 106 m/s. The two particles annihilate each other and produce two photons of equal energy. (a) Do you need to use relativity for this problem? Support your answer numerically, and comment intelligently. (b) What were the deBroglie wavelengths of the electron and positron? (c) Find the energy of each photon. (d) Find the momentum of each photon. (e) Find the wavelength of each photon.
Two pieces of clay of equal mass move with equal speed, but in opposite directions on...
Two pieces of clay of equal mass move with equal speed, but in opposite directions on a frictionless surface. If both collide head-on. What happens to the cinetic energy?
A particle A was moving at a speed of 0.8 c, with respect to the lab...
A particle A was moving at a speed of 0.8 c, with respect to the lab frame, in the +x- direction, when it decayed into two identical particles F and G , with G having momentum along the +x- direction. The masses of the particles are mA= 100 MeV/c2, mF=mG=30 MeV/c2. What are the momenta and the velocities of each particle F and G in the frame S?
Two identical steel balls, each of mass 70.8 g, are moving in opposite directions at 4.20...
Two identical steel balls, each of mass 70.8 g, are moving in opposite directions at 4.20 m/s.They collide head-on and bounce apart elastically. By squeezing one of the balls in a vise while precise measurements are made of the resulting amount of compression, you find that Hooke's law is a good model of the ball's elastic behavior. A force of 16.5 kN exerted by each jaw of the vise reduces the diameter by 0.120 mm. Model the motion of each...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or...
An electron and an antielectron (positron) each have a rest energy of 0.511 MeV , or approximately 8.2×10-14 J . When an electron and a positron are both stationary and located next to each other during an annihilation process, their mass energy converts to electromagnetic energy released as photons, electromagnetic particles that have momentum but no mass and that travel at the speed of light. What is the minimum number of photons that could be released, and how much energy...