Question

in a velocity selector for ions, when the electric field is decreased by 50%, what change...

in a velocity selector for ions, when the electric field is decreased by 50%, what change in the magnetic field is necessary to select the same speed as before?

Homework Answers

Answer #1

In the velocity selector, the electric force is equal to magnetic force. We use this to find the required change in magnetic field as shown below

***********************************************************************************************
Check the answer and let me know immediately if you find something wrong or missing... I will rectify the mistakes asap if any

in Veloci ty selectr Felecn'c Fmagatic E vB B VE if V is constamts BI B2 E-ESO E2 BL B2 32B 2 Sa magnehc Aeld show aloo be deoreave halve S0%

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A velocity selector uses a 66 mT magnetic field perpendicular to a 25 kN/C electric field....
A velocity selector uses a 66 mT magnetic field perpendicular to a 25 kN/C electric field. At what speed will charged particles pass through the selector undeflected? (m/s)
You have a Bainbridge Mass Spectrometer with an electric field in the velocity selector of 1.20...
You have a Bainbridge Mass Spectrometer with an electric field in the velocity selector of 1.20 x 105 V/m and a magnetic field in both regions of 0.600 T. A stream of singly charged ions from a pure source (i.e.-all the atoms are the same type of element) move in a semicircular arc and strike the recording plate 1.46 m from the opening in the magnetic field chamber. Determine the mass of the ions. Given the fact that the mass...
Magnetic Force on a Moving Charge A velocity selector is a simple configuration of electric and...
Magnetic Force on a Moving Charge A velocity selector is a simple configuration of electric and magnetic fields that allows only those ions of a particular velocity in a narrow beam of ions to pass through it. A constant electric field E is oriented perpendicularly to a constant magnetic field B. The beam passes through the fields in the third direction, i.e., perpendicular to both E and B. A screen with a small hole blocks all the ions that are...
In a mass spectrometer a beam of 14N+ and 16O+ ions passes through a velocity selector...
In a mass spectrometer a beam of 14N+ and 16O+ ions passes through a velocity selector so that the ions all have the same velocity. The beam then enters a region of uniform magnetic field. If the radius of the orbit of the 14N+ ions is 6.6 cm, what is the radius of the orbit of the  16O+ ions?
A proton, moving horizontally, passes straight through a velocity selector that has an electric field running...
A proton, moving horizontally, passes straight through a velocity selector that has an electric field running vertically upwards. If an electron, with the same kinetic energy, entered the same velocity selector it would Group of answer choices A.be deflected upwards B.be deflected downwards C.pass straight through D.none of the above The magnitude of the magnetic force on the electron (in the previous problem) will be Group of answer choices A.much smaller than the force on the proton B.much larger than...
1) A mass spectrometer was used in the discovery of the electron. In the velocity selector,...
1) A mass spectrometer was used in the discovery of the electron. In the velocity selector, the electric and magnetic fields are set to only allow electrons with a specific velocity to exit the fields. The electrons then enter an area with only a magnetic field, where the electron beam is deflected in a circular shape with a radius of 8.0 mm. In the velocity selector, E = 400.0 V/m and B = 4.7 x 10-4 T. The same value...
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is...
A negatively charged particle (m=7x10^-27kg and q=-1.6x10^-19C) enters a velocity selector where the electric field is upward and 12,000 V/m. The magnetic field has a magnitude of 5 milliTesla. 1.) What is the speed of the particle? 2.) What is the direction of the B1 field? 3.) If it enters a second magnetic field B2=0.4 Tesla, directed into the page, what is the radius of the path? Start from Fc=mv^2/r = Fe 4.) Does it bend clockwise or counterclockwise?
a velocity secelector is designed to select ions with a velocity of 7.2×10^4 m/s . it...
a velocity secelector is designed to select ions with a velocity of 7.2×10^4 m/s . it is configured with a magnet that produces a magnetic field of magnitude B=1.6t which points into the page. in addition a pair or parallel plates separated by a distance 9.6×10^-3 m ie included to produce the necessary electric force on the ions. find the voltage in units of volts.
An electron enters a region of uniform electric field with an initial velocity of 50 km/s...
An electron enters a region of uniform electric field with an initial velocity of 50 km/s in the same direction as the electric field, which has magnitude E = 52 N/C. (a) What is the speed of the electron 1.3 ns after entering this region? (b) How far does the electron travel during the 1.3 ns interval?
A velocity selector consists of electric and magnetic fields described by the expressions E with arrow...
A velocity selector consists of electric and magnetic fields described by the expressions E with arrow = E k and B with arrow = B ?, with B = 19.0 mT. Find the value of E such that a 690-eV electron moving in the negative x direction is undeflected.