Question

A 5kg wheel has a radius of 0.2m. It rolls along a horizontal surface, starting with...

A 5kg wheel has a radius of 0.2m. It rolls along a horizontal surface, starting with an initial speed of 5m/s. It comes to rest after traveling 20m. If it rolls without slipping, what is the coefficient of static friction between the surface and the wheel? SHOW ALL OF YOUR WORK.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A solid sphere of mass 0.6010 kg rolls without slipping along a horizontal surface with a...
A solid sphere of mass 0.6010 kg rolls without slipping along a horizontal surface with a translational speed of 5.420 m/s. It comes to an incline that makes an angle of 31.00° with the horizontal surface. To what vertical height above the horizontal surface does the sphere rise on the incline?
A 392 N wheel comes off a moving truck and rolls without slipping along a highway....
A 392 N wheel comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at 27 rad/s. The radius of the wheel is 0.600 m, and its moment of inertia about its rotation axis is 0.800MR2. Friction does work on the wheel as it rolls up the hill to a stop, a height h above the bottom of the hill; this work has absolute value 2600 J. Calculate hh.
A wheel with a radius of 61.0 cm rolls without slipping along a horizontal floor (see...
A wheel with a radius of 61.0 cm rolls without slipping along a horizontal floor (see the figure). At time t1, the dot P painted on the rim of the wheel is at the point of contact between the wheel and the floor. At a later time t2, the wheel has rolled through one-half of a revolution. What are (a) the magnitude and (b) the angle (relative to the floor) of the displacement of P during this interval?
A wheel with a radius of 78.0 cm rolls without slipping along a horizontal floor (see...
A wheel with a radius of 78.0 cm rolls without slipping along a horizontal floor (see the figure). At time t1, the dot P painted on the rim of the wheel is at the point of contact between the wheel and the floor. At a later time t2, the wheel has rolled through one-half of a revolution. What are (a) the magnitude and (b) the angle (relative to the floor) of the displacement of P during this interval?
A wheel with a weight of 393 N comes off a moving truck and rolls without...
A wheel with a weight of 393 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 22.3 rad/s . The radius of the wheel is 0.628 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of habove the bottom of...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is...
Part A) A potter's wheel—a thick stone disk of radius 0.400 m and mass 138 kg—is freely rotating at 60.0 rev/min. The potter can stop the wheel in 5.00 s by pressing a wet rag against the rim and exerting a radially inward force of 58.9N. Find the effective coefficient of kinetic friction between the wheel and rag. Part B) The net work done in accelerating a solid cylindrical wheel from rest to an angular speed of 50rev/ min is...
A wheel with a weight of 396 N comes off a moving truck and rolls without...
A wheel with a weight of 396 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.2 rad/s . The radius of the wheel is 0.597 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal...
A hollow sphere (mass 8.8 kg, radius 54.8 cm) is rolling without slipping along a horizontal surface, so its center of mass is moving at speed vo. It now comes to an incline that makes an angle 56o with the horizontal, and it rolls without slipping up the incline until it comes to a complete stop. Find a, the magnitude of the linear acceleration of the ball as it travels up the incline, in m/s2.
A wheel with a weight of 395 N comes off a moving truck and rolls without...
A wheel with a weight of 395 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 26.1 rad/s . The radius of the wheel is 0.651 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
A wheel with a weight of 387 N comes off a moving truck and rolls without...
A wheel with a weight of 387 N comes off a moving truck and rolls without slipping along a highway. At the bottom of a hill it is rotating at an angular velocity of 24.7 rad/s . The radius of the wheel is 0.592 m and its moment of inertia about its rotation axis is 0.800 MR2. Friction does work on the wheel as it rolls up the hill to a stop, at a height of h above the bottom...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT