Question

A ball that weighs 150g slides down a perfectly smooth incline at a starting height of...

A ball that weighs 150g slides down a perfectly smooth incline at a starting height of 2.44 m at rest. Towards the bottom of the incline it strikes a 280g block and sticks. Both the ball and the block are able to move freely along the frictionless rollercoaster track. Can it make it over the first hill if the first hill is 23 cm high?

Homework Answers

Answer #1

Final Answer:- it will make it over the first hill of height 23 cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block starting from rest at t = 0.0seconds slides down a frictionless incline. during the...
A block starting from rest at t = 0.0seconds slides down a frictionless incline. during the time interval between t = 0seconds and t = 1 seconds, the block travels 20 cm along the incline. During the time interval between t = 1 second and t = 2 seconds, the block travels how much CM??
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 2.10 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 8.00 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Determine the speed of the block with mass m = 2.10 kg after the collision. Determine the speed of the...
Part a. Starting from rest, a 14 kg box slides down a frictionless incline that is...
Part a. Starting from rest, a 14 kg box slides down a frictionless incline that is 7 meters tall. What is the velocity of the box at the bottom of the incline? Part b. A thin hoop of mass 14 kg and radius 1.2 m rolls down an incline that is 7 meters tall. What is the velocity of the thin hoop at the bottom of the incline? Part c. A solid disk of mass 14 kg and radius 1.2...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane...
1.A small block of mass 3.5 kg starting from rest slides down on an incline plane of height 2.0 m, 40 degrees with respect to horizontal (Fig. 2). The coefficient of kinetic friction between the block and the incline plane is 0.25. At the end of the incline plane, the block hits the top of a hemispherical mound of ice (radius 1.0 m) , loses 75% of final kinetic energy (KE=0.5mv*v) before the collision, then slide down on the surface...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of...
A 9.0-kg box of oranges slides from rest down a frictionless incline from a height of 5.0 m. A constant frictional force, introduced at point A, brings the block to rest at point B. If the coefficient of kinetic friction is 0.26, what is the distance between A and B?
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m,...
A 0.20-kg block slides from rest down a frictionless track from a height of 1.5 m, and encounters a loop that is 1.0 m high. (a) What is the speed of the block at the top of the loop? (b) The block is slowed by a spring at the bottom of the track. If the stiffness of the spring is 0.90 kN/m, how far does the block slide before coming to rest?
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60...
A block of mass m = 1.50 kg slides down a 30.0∘ incline which is 3.60 m high. At the bottom, it strikes a block of mass M = 6.20 kg which is at rest on a horizontal surface (Figure 1). (Assume a smooth transition at the bottom of the incline.) The collision is elastic, and friction can be ignored. Part A Determine the speed of the block with mass m = 1.50 kg after the collision. Express your answer...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26...
A 500-g block is released from rest and slides down a frictionless track that begins 2.26 m above the horizontal, as shown in the figure below. At the bottom of the track, where the surface is horizontal, the block strikes and sticks to a light spring with a spring constant of 29.5 N/m. Find the maximum distance the spring is compressed. m A 500-g block rests at the top of a track on a horizontal platform. From this platform, the...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient...
Starting from rest, a 4.30-kg block slides 1.80 m down a rough 30.0° incline. The coefficient of kinetic friction between the block and the incline is ?k = 0.436. (a) Determine the work done by the force of gravity. J (b) Determine the work done by the friction force between block and incline. J (c) Determine the work done by the normal force. J (d) Qualitatively, how would the answers change if a shorter ramp at a steeper angle were...
Problem   1 A11kg   block   starts   from   rest   at   22m   height   and   slides   down   a   frictionless   sem
Problem   1 A11kg   block   starts   from   rest   at   22m   height   and   slides   down   a   frictionless   semicircular   track.Block   collides   with   50   kg   stationary   object   at   the   bottom   of   the   track,   if   objects   stick   together   after   collision.   What   is   the maximum   height   block- object   system   could   reach? i)Draw   a   sketch   of   the   collision ii)Write   expression   for   initial   energy   of       the   falling   block iii)Write   final   energy   of   falling   block iv)Set   the   expressions   equal   and   solve   for   velocity v)Write   the   expression   of   momentum  ...