Question

Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n =...

Consider a thin spherical shell located between r = 0.49a0 and 0.51a0. For the n = 2, l = 1 state of hydrogen, find the probability for the electron to be found in a small volume element that subtends a polar angle of 0.11° and an azimuthal angle of 0.25° if the center of the volume element is located at: θ=5°, ϕ=35°.

Probability when n=2,l=1,m=0
Probability when n=2,l=1,m=±1

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A thin spherical shell of silver has an inner radius of 3.62 x 10-2 m when...
A thin spherical shell of silver has an inner radius of 3.62 x 10-2 m when the temperature is 29.1 °C. The shell is heated to 150 °C. Find the change in the interior volume of the shell.
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What...
A thin spherical metal shell of radius 8.0 cm carries 7.5 µC of excess charge. What is the magnitude of the electric field it produces at the following places? (k = 1/4 0 = 9.0 × 109 N  m2/C2) (a) at 1.0 cm above the surface (b) at 7.0 cm from the center of the sphere
A thin plastic spherical shell with radius 5 cm has a charge Q = 2 e...
A thin plastic spherical shell with radius 5 cm has a charge Q = 2 e (where e is the charge of a proton) distributed evenly over its surface. At the center of the hole is a point charge q = -2 e. What would be the force on a point charge of 1.1 e displaced < 0, 2.9, 0 > cm from the point charge q? < 0, -6.0e-25, 0 > N < 0, 6.0e-25, 0 > N <...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside...
A thin, uniformly charged spherical shell has a potential of 727 V on its surface. Outside the sphere, at a radial distance of 20.0 cm from this surface, the potential is 403 V. (1) Calculate the radius of the sphere. (2) Determine the total charge on the sphere (3) What is the electric potential inside the sphere at a radius of 3.0 cm (4) Calculate the magnitude of the electric field at the surface of the sphere. (5) If an...
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The...
pendulum of mass m= 0.8 kg and length l=1 m is hanging from the ceiling. The massless string of the pendulum is attached at point P. The bob of the pendulum is a uniform shell (very thin hollow sphere) of radius r=0.4 m, and the length l of the pendulum is measured from the center of the bob. A spring with spring constant k= 7 N/m is attached to the bob (center). The spring is relaxed when the bob is...
A thin rod of length L=2.0 m can rotate freely about a pin that is located...
A thin rod of length L=2.0 m can rotate freely about a pin that is located a distance x=0.44 m from one end. Two forces act on opposite ends of the rod. Force F1 =10.2 N pushes at an angle θ1 =119.3° with respect to the rod (a distance x from the pivot point). Force F2 =5.0 N pushes on the opposite end at an angle θ2 =68.5° with respect to the rod as shown in the figure. Find the...
A uniform spherical shell of mass M = 14.0 kg and radius R = 0.770 m...
A uniform spherical shell of mass M = 14.0 kg and radius R = 0.770 m can rotate about a vertical axis on frictionless bearings (see the figure). A massless cord passes around the equator of the shell, over a pulley of rotational inertia I = 0.170 kg·m2 and radius r = 0.0950 m, and is attached to a small object of mass m = 3.50 kg. There is no friction on the pulley's axle; the cord does not slip...
1- For some atom, consider an electron shell corresponding to a principal quantum number n. Answer...
1- For some atom, consider an electron shell corresponding to a principal quantum number n. Answer the questions (a)-(b) below. (a) What is the number of electrons in a fully occupied subshell with a given orbital quantum number l? Explain your answer. (b) What is the number of electrons in a fully occupied shell with a given principal quantum number n? Explain your answer. Hint: For the part (b), use the known mathematical formulas for finite sums: 1 ? ?=0...
(a) If the radial part of a particle’s wavefunction is R(r), what is the probability of...
(a) If the radial part of a particle’s wavefunction is R(r), what is the probability of finding the particle somewhere between radius r1 and r2? (b) Write down the radial wavefunction R10(r) for the n = 1, l = 0 state of the hydrogen atom. The nucleus of the hydrogen atom is a proton, which has a radius rp = 1015 m. Write down an approximate expression for R10(r) which is valid for r ≤ rp. What is the probability...
An object is formed by attaching a uniform, thin rod with a mass of mr =...
An object is formed by attaching a uniform, thin rod with a mass of mr = 7.22 kg and length L = 5.52 m to a uniform sphere with mass ms = 36.1 kg and radius R = 1.38 m. Note ms = 5mr and L = 4R. 1)What is the moment of inertia of the object about an axis at the left end of the rod? 2)If the object is fixed at the left end of the rod, what...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT