Question

Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km...

Consider a 355kg satellite in a circular orbit at a distance of 3.07 x 104 km above the Earth’s surface. What is the minimum amount of work the satellite’s thrusters must do to raise the satellite to a geosynchronous orbit? Geosynchronous orbits occur at approximately 3.60 x 104 km above the Earth’s surface. The radius of the Earth and the mass of the Earth are RE = 6.37 x 103 km and ME = 5.97 x 1024 kg respectively. The gravitational constant 6.67 x 10-11 m3/kg.s2 Assume the change in mass of the satellite is negligible.

Homework Answers

Answer #1

Find the energy of satellite in an orbit and the work done will be equal to change in energy for the transfer of orbit as shown below.

***********************************************************************************************
Check the answer and let me know immediately if you find something wrong or missing... I will rectify the mistakes asap if any

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius...
A 200 kg satellite is placed in Earth’s orbit 200 km above the surface. The Radius of Earth is 6.37 x 106 m, and the Earth’s mass is 5.98 x 1024 kg. A) Assuming a circular orbit, how long does the satellite take to complete one orbit? B) What is the satellite’s speed?
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface....
A 345 kg satellite is orbiting on a circular orbit 8955 km above the Earth's surface. What is the gravitational acceleration at the location of the satellite? (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.)?
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024...
1. A satellite is in a circular orbit about the earth (ME = 5.98 x 1024 kg). The period of the satellite is 2.35 x 104 s. What is the speed at which the satellite travels? 2. Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 545 km above the earth’s surface, while that for satellite B is at a height of 787 km. Find the orbital speed for (a)...
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface....
A 160 kg satellite is orbiting on a circular orbit 7655 km above the Earth's surface. Determine the speed of the satellite. (The mass of the Earth is 5.97×1024 kg, and the radius of the Earth is 6370 km.) (in km/s)
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface....
A satellite is set to orbit at an altitude of 20200 km above the Earth's surface. What is the period of the satellite in hours? (Earth radius 6.378×1066.378×106 m, Earth mass 5.97×10245.97×1024 kg, Universal Gravitational constant G=6.67×10−11m3kg−1s−2G=6.67×10−11m3kg−1s−2 ).
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of...
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of the earth. The Universal Gravitational Constant is 6.67×10−11 N⋅m2/kg2 and the mass of the earth is 5.98×1024 kg. Part A What speed (in m/s) would the satellite have to maintain? Express your answer using three significant figures. Credit: 3 pts.
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of...
A satellite of mass m = 2.00 ×103 kg is launched into a circular orbit of orbital period T = 4.00 hours. Newton's gravitational constant is G = 6.67 ×10−11 N∙m2/kg2, and the mass and radius of the Earth are respectively M⨁ = 5.97 ×1024 kg and r⨁ = 6.37 ×106 m. Answer the following questions. What is the total mechanical energy (kinetic energy + potential energy) of the satellite in orbit? Take the gravitational potential energy of the satellite...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at...
Two satellites are in circular orbits around the earth. The orbit for satellite A is at a height of 556 km above the earth’s surface, while that for satellite B is at a height of 888 km. Find the orbital speed for (a) satellite A and (b) satellite B.
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one...
(a) Calculate the orbital speed of a satellite that orbits at an altitude h = one Earth radius above the surface of the Earth. (b) What is the acceleration of gravity at this altitude? (G = 6.67 x 10-11 N.m2 /kg2 , ME = 5.97 x 1024 kg, RE = 6.37 x 106 m)
A satellite of mass 3.00 x 104 kg is placed in orbit 5.00 x 105 m...
A satellite of mass 3.00 x 104 kg is placed in orbit 5.00 x 105 m above the surface of Jupiter. Please refer to the data table for planetary motion included in this lesson. Determine the force of gravitational attraction between the satellite and Jupiter. What must be the orbital speed of the satellite? What must be the value of the gravitational field constant, g, at the location of the satellite? One of the moons of Jupiter is Europa. It's...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT