Question

A steel ball with mass 40.0 g is dropped from a height of 2.00 m onto...

A steel ball with mass 40.0 g is dropped from a height of 2.00 m onto a horizontal steel slab. The ball rebounds to a height of 1.60 m.

(a) Calculate the impulse delivered to the ball during impact, in N-m. Define upward as positive.

(b) If the ball is in contact with the slab for 2.00 ms, find the average force on the ball during impact, in N. Define upward as positive.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 20 g ball is dropped from a height of 1.8 m. It rebounds from the...
A 20 g ball is dropped from a height of 1.8 m. It rebounds from the ground with 80% of the speed it had just before it hit the ground. Assume that during the bounce the gound causes a constant force on the ball for 75 ms. What is the force applied to the ball by the ground in N?
A 160 g ball is dropped from a height of 2.2 m , bounces on a...
A 160 g ball is dropped from a height of 2.2 m , bounces on a hard floor, and rebounds to a height of 1.1 m . The figure(Figure 1) shows the impulse received from the floor. Part A What maximum force does the floor exert on the ball?
A ball falls from height of 20.0 m, hits the floor, and rebounds vertically upward to...
A ball falls from height of 20.0 m, hits the floor, and rebounds vertically upward to height of 15.5 m. Assume that mball = 0.335 kg. (a) What is the impulse (in kg · m/s) delivered to the ball by the floor? b) If the ball is in contact with the floor for 0.0400 seconds, what is the average force (in N) the floor exerts on the ball?
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m....
A ball with a mass of 2.0 kg is dropped from a height of 1.5 m. The ball hits the floor and bounces back to a height of 1.1 m. Use energy conservation wherever possible to answer these questions. (a) What is the speed of the ball just before it reaches the floor initially? (b) What is the speed of the ball just after it leaves the floor? (c) How much work is done by the floor? (d) The coefficient...
After dropping from a height of 1.50m onto a concrete floor, a 50g ball rebounds to...
After dropping from a height of 1.50m onto a concrete floor, a 50g ball rebounds to a height of .90m. A. Find the impulse acting on the ball as it dropped. B. Find the impulse acting on the ball as it rebounds. C. Find the impulse on the ball while it was in contact with the floor. Please show all calculations and steps clearly.
After falling from rest from a height of 33 m, a 0.60-kg ball rebounds upward, reaching...
After falling from rest from a height of 33 m, a 0.60-kg ball rebounds upward, reaching a height of 23 m. If the contact between ball and ground lasted 2.3 ms, what average force was exerted on the ball? (Enter the magnitude.) N
a ball of mass 0.175kg is dropped from rest from a height of 1.25m. it rebounds...
a ball of mass 0.175kg is dropped from rest from a height of 1.25m. it rebounds from the floor to reach a height of 0.825m. what impulse was given to the ball by the floor? magnitude______ kg
After falling from rest from a height of 27 m, a 0.46 kg ball rebounds upward,...
After falling from rest from a height of 27 m, a 0.46 kg ball rebounds upward, reaching a height of 17 m. If the contact between ball and ground lasted 2.1 ms, what average force was exerted on the ball?
1. a tennis ball is dropped from a height of 2 m and it rebounds 95...
1. a tennis ball is dropped from a height of 2 m and it rebounds 95 cm. use g=10 m/s^2, and the tennis ball weights .058 kg. a) find the change of momentum when the ball is at a height of 1.5 m downward and at 0.5 m downward. which i got -3.14 kg m/s for the 1.5 m, and -0.18 kg m/s, and then what is the impulse exerted on the object during that change of momentum? b) compute...
A ball of mass 2.25 kg is released from rest at height 5.29 m above the...
A ball of mass 2.25 kg is released from rest at height 5.29 m above the floor. It falls, hits the ground, and rebounds to height 3.19 m above the floor. Assume none of the losses are due to air friction. Find the impulse, in N-s, exerted by the floor on the ball. The sign of your answer will give the direction of the impulse.