Question

A merry-go-round starts from rest and accelerates uniformly over 10.0 s to a final angular velocity...

A merry-go-round starts from rest and accelerates uniformly over 10.0 s to a final angular velocity of 4.55 rev/min.
(a) Find the maximum linear speed of a person sitting on the merry-go-round 6.00 m from the center.
(b) Find the person's maximum radial acceleration.
(c) Find the angular acceleration of the merry-go-round.
(d) Find the person's tangential acceleration.

Homework Answers

Answer #1

Sol:

Given
Time(t)= 10 s
final angular velocity = 4.55 rev/min


(a)
The maximum linear speed of a person sitting on the merry-go-round 6 m from the center will be obtained as

Angular velocity (w) =4.55rev/min
=0.4764 rad/s

V=w*r
=0.4764 x 6
= 2.858 m/s

(b)
the person's maximum radial acceleration.

ar=rw^2
= 6 x 0.4764^2
= 1.36 m/s^2

(c)
the angular acceleration of the merry-go-round
a=(w-0)/t
=(0.4764 - 0)/10
= 0.0476 rad/s^2

(d) Find the person's tangential acceleration.
a=0.04764x 6
= 0.285 m/s^2

Hope this helps you..
Please VOTE my answer

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A merry-go-round starts from rest and accelerates uniformly over 19.5 s to a final angular velocity...
A merry-go-round starts from rest and accelerates uniformly over 19.5 s to a final angular velocity of 6.25 rev/min. (a) Find the maximum linear speed of a person sitting on the merry-go-round 4.00 m from the center. (b) Find the person's maximum radial acceleration. (c) Find the angular acceleration of the merry-go-round. (d) Find the person's tangential acceleration.
A merry-go-round starts from rest and accelerates uniformly over 26.5 s to a final angular velocity...
A merry-go-round starts from rest and accelerates uniformly over 26.5 s to a final angular velocity of 6.90 rev/min. (a) Find the maximum linear speed of a person sitting on the merry-go-round 7.25 m from the center. (b) Find the person's maximum radial acceleration. (c) Find the angular acceleration of the merry-go-round. (d) Find the person's tangential acceleration.
2) A merry-go-round is rotating with a constant angular velocity of ω = 1.5 rad/s. There...
2) A merry-go-round is rotating with a constant angular velocity of ω = 1.5 rad/s. There is a red line painted across the diameter of the merry-go-round. A beetle is traveling towards the center of the merrygo-round along the red line with a constant speed of 2 m/s relative to the merry-go-round. a) Find the velocity of the beetle as measured by someone standing on the ground when the beetle is 0.5 m away from the center of the merry-go-round....
a flywheel of diameter 37.5 cm starts from rest and accelerates to an angular velocity of...
a flywheel of diameter 37.5 cm starts from rest and accelerates to an angular velocity of 900 rpm in 5.38 seconds. find the magnitude of the total acceleration at 1.62 seconds.
Merry Go Round A merry-go-round with a radius of R = 1.80 m and moment of...
Merry Go Round A merry-go-round with a radius of R = 1.80 m and moment of inertia I = 201 kg-m2 spinning with an initial angular speed of ω = 1.5 rad/s in the counter clockwise direction when viewed from above. A person with mass m = 55 kg and velocity v = 4.5 m/s runs on a path tangent to the merry-go-round. Once at the merry-go-round the person jumps on and holds on to the rim of the merry-go-round....
A merry-go-round rotates from rest with an angular acceleration of 2.00 rad/s2. How long does it...
A merry-go-round rotates from rest with an angular acceleration of 2.00 rad/s2. How long does it take to rotate through (a) the first 4.00 rev. (b) At the 4.00 rev angle the acceleration immediately changes to 1.5 rad/s2 , how long does it take to rotate the next 4.00 rev?
A flywheel with a radius of .340 m starts from rest and accelerates with a constant...
A flywheel with a radius of .340 m starts from rest and accelerates with a constant angular acceleration of .730 rad/ s2. A) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim at the start. B) compute the magnitude of the tangential acceleration, the radial acceleration, and the resultant acceleration of a point on its rim after it has turned through 60.0. C) compute the magnitude of the tangential...
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with...
A child exerts a tangential 58.5 N force on the rim of a disk-shaped merry-go-round with a radius of 2.99 m. If the merry-go-round starts at rest and acquires an angular speed of 0.1250 rev/s in 5.00 s, what is its mass?
A playground merry-go-round is a large disk of mass 10.0 kg and radius 2.00 m. The...
A playground merry-go-round is a large disk of mass 10.0 kg and radius 2.00 m. The merry-go-round is initially at rest. A physics teacher pushes on the rim for 24.0 s to accelerate it with constant angular acceleration until the merry-go-round has completed a total of 9.00 full revolutions. a. What is the final angular velocity after 24.0 s? b. How much total work did the teacher do on the merry-go-round? (You may assume the axle for the merry-go-round is...
A disk-shaped merry-go-round of radius 2.93 m and mass 185 kg rotates freely with an angular...
A disk-shaped merry-go-round of radius 2.93 m and mass 185 kg rotates freely with an angular speed of 0.621 rev/s . A 60.4 kg person running tangential to the rim of the merry-go-round at 3.51 m/s jumps onto its rim and holds on. Before jumping on the merry-go-round, the person was moving in the same direction as the merry-go-round's rim. What is the final angular speed of the merry-go-round?