Question

A simple harmonic oscillator consists of a block of mass 3.80 kg
attached to a spring of spring constant 350 N/m. When *t* =
1.20 s, the position and velocity of the block are *x* =
0.137 m and *v* = 4.450 m/s. **(a)** What is
the amplitude of the oscillations? What were the
**(b)** position and **(c)** velocity of
the block at *t* = 0 s?

Answer #1

A] let the amplitude be A,

then maximum spring energy = energy at any instant

0.5kA^2 = 0.5kx^2+0.5mv^2

0.5*350*A^2 = 0.5*350*0.137^2+0.5*3.80*4.45^2

A = 0.4835m

b] We have position x = A sin (wt+phi)

0.137 = 0.4835*sin( sqrt(350/3.8)*1.2+phi)

( sqrt(350/3.8)*1.2+phi) = arcsin(0.137/0.4835) = 0.287286

phi = 0.287286 -sqrt(350/3.8)*1.2 = -11.229

position x = Asin (w*0+phi)

= 0.4835*sin -11.229 rad

= 0.4704m

c) velocity v = Aw cos (w*0+phi) = 0.4835*sqrt(350/3.8)*cos(-11.229) = 1.073 m/s

A simple harmonic oscillator consists of a block of mass
2.60
kg attached to a spring of spring constant
350
N/m. When
t
=
2.20
s, the position and velocity of the block are
x
=
0.175
m and
v
=
3.420
m/s.
(a)
What is the amplitude of the oscillations? What were the
(b)
position and
(c)
velocity of the block at
t
= 0 s?

A simple harmonic oscillator consists of a block of mass 3.70 kg
attached to a spring of spring constant 410 N/m. When t = 1.60 s,
the position and velocity of the block are x = 0.102 m and v =
3.050 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 3.00 kg
attached to a spring of spring constant 110 N/m. When t =
2.30 s, the position and velocity of the block are x =
0.127 m and v = 3.580 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 2.90 kg
attached to a spring of spring constant 280 N/m. When t =
2.20 s, the position and velocity of the block are x =
0.189 m and v = 3.000 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.70 kg
attached to a spring of spring constant 340 N/m. When t =
0.840 s, the position and velocity of the block are x =
0.101 m and v = 3.100 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 3.30 kg
attached to a spring of spring constant 440 N/m. When t =
1.30 s, the position and velocity of the block are x =
0.154 m and v = 3.540 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.80 kg
attached to a spring of spring constant 360 N/m. When t = 0.520 s,
the position and velocity of the block are x = 0.200 m and v =
4.420 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 4.50 kg
attached to a spring of spring constant 210 N/m. When t = 1.90 s,
the position and velocity of the block are x = 0.143 m and v =
3.870 m/s. (a) What is the amplitude of the oscillations? What were
the (b) position and (c) velocity of the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 1.30 kg
attached to a spring of spring constant 490 N/m. When t=
0.500 s, the position and velocity of the block are x =
0.155 m and v = 3.510 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s?

A simple harmonic oscillator consists of a block of mass 3.10 kg
attached to a spring of spring constant 240 N/m. When t =
1.80 s, the position and velocity of the block are x =
0.155 m and v = 4.360 m/s. (a) What is
the amplitude of the oscillations? What were the
(b) position and (c) velocity of
the block at t = 0 s? (really need help with part c for
part a i got .52 and...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 53 minutes ago

asked 57 minutes ago

asked 57 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago