Question

A simple harmonic oscillator consists of a block of mass 3.80 kg attached to a spring...

A simple harmonic oscillator consists of a block of mass 3.80 kg attached to a spring of spring constant 350 N/m. When t = 1.20 s, the position and velocity of the block are x = 0.137 m and v = 4.450 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?

Homework Answers

Answer #1

A] let the amplitude be A,

then maximum spring energy = energy at any instant

0.5kA^2 = 0.5kx^2+0.5mv^2

0.5*350*A^2 = 0.5*350*0.137^2+0.5*3.80*4.45^2

A = 0.4835m

b] We have position x = A sin (wt+phi)

0.137 = 0.4835*sin( sqrt(350/3.8)*1.2+phi)

  ( sqrt(350/3.8)*1.2+phi) = arcsin(0.137/0.4835) = 0.287286

phi = 0.287286 -sqrt(350/3.8)*1.2 = -11.229

position x = Asin (w*0+phi)

= 0.4835*sin -11.229 rad

= 0.4704m

c) velocity v = Aw cos (w*0+phi) = 0.4835*sqrt(350/3.8)*cos(-11.229) = 1.073 m/s

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A simple harmonic oscillator consists of a block of mass 2.60 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.60 kg attached to a spring of spring constant 350 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.175 m and v = 3.420 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.70 kg attached to a spring of spring constant 410 N/m. When t = 1.60 s, the position and velocity of the block are x = 0.102 m and v = 3.050 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.00 kg attached to a spring of spring constant 110 N/m. When t = 2.30 s, the position and velocity of the block are x = 0.127 m and v = 3.580 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 2.90 kg attached to a spring of spring constant 280 N/m. When t = 2.20 s, the position and velocity of the block are x = 0.189 m and v = 3.000 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.70 kg attached to a spring of spring constant 340 N/m. When t = 0.840 s, the position and velocity of the block are x = 0.101 m and v = 3.100 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.30 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.30 kg attached to a spring of spring constant 440 N/m. When t = 1.30 s, the position and velocity of the block are x = 0.154 m and v = 3.540 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.80 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.80 kg attached to a spring of spring constant 360 N/m. When t = 0.520 s, the position and velocity of the block are x = 0.200 m and v = 4.420 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 4.50 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 4.50 kg attached to a spring of spring constant 210 N/m. When t = 1.90 s, the position and velocity of the block are x = 0.143 m and v = 3.870 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 1.30 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 1.30 kg attached to a spring of spring constant 490 N/m. When t= 0.500 s, the position and velocity of the block are x = 0.155 m and v = 3.510 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s?
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring...
A simple harmonic oscillator consists of a block of mass 3.10 kg attached to a spring of spring constant 240 N/m. When t = 1.80 s, the position and velocity of the block are x = 0.155 m and v = 4.360 m/s. (a) What is the amplitude of the oscillations? What were the (b) position and (c) velocity of the block at t = 0 s? (really need help with part c for part a i got .52 and...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT