Question

A 1450-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at...

A 1450-kg car moving east at 17.0 m/s collides with a 1880-kg car moving south at 15.0 m/s, and the two cars connect together.

How much kinetic energy was converted to another form during the collision? kJ

Homework Answers

Answer #1

here,

the mass of car 1 , m1 = 1450 kg has initial speed , u1 = 17 m/s i

the mass of seccond car , m2 = 1880 kg has initial speed , u2 = - 15 m/s j

let the final speed of combo be v

using conservation of momentum

m1 * u1 + m2 * u2 = (m1 + m2) * v

1450 * 17 i - 1880 * 15 j = ( 1450 + 1880) * v

v = 7.4 i m/s - 8.47 j m/s

the final speed , |v| = sqrt(7.4^2 + 8.47^2) = 11.25 m/s

the kinetic energy converted to another form during the collision , dKE = KEf - KEi

dKE = 0.5 * ( m1 * u1^2 + m2 * v2^2 - (m1 + m2) * v^2)

dKE = 0.5 * ( 1450 * 17^2 + 1880 * 15^2 - ( 1450 + 1880) * 11.25^2)

dKE = 210.3 KJ

the kinetic energy converted to another form during the collision is 210.3 KJ

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at...
A 1450-kg car moving east at 17.0 m/s collides with a 1850-kg car moving south at 15.0 m/s, and the two cars connect together. What is the direction of the cars right after the collision? Enter the angle in degrees where positive indicates north of east and negative indicates south of east.
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving...
A 2500 kg car moving east at 10.0 m/s collides with a 3000 kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 47.0° north of east and at a speed of 6.66 m/s. Find the velocity of the 3000 kg car before the collision. m/s north
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg...
A 900 kg car moving East with speed of 20 m/s collides with a 1500 kg car moving North with speed of 15 m/s at an intersection. Both cars stick together after collision. What is the speed and direction of these two stuck cars immediately after this collision?
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The...
A 2,500-kg car moving east at 10.0 m/s collides with a 3,000-kg car moving north. The cars stick together and move as a unit after the collision, at an angle of 35.0 degrees north of east and at a speed of 5.55 m/s. Find the speed of the 3,000-kg car before the collision. __________ m/s north
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples...
A railroad car of mass 2.50 ✕ 104 kg moving at 3.40 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? (b) How much kinetic energy is lost in the collision?
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples...
A railroad car of mass 3.00 ? 104 kg moving at 3.00 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? _______ m/s (b) How much kinetic energy is lost in the collision? _______ J
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples...
A railroad car of mass 2.70 ✕ 104 kg moving at 3.50 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples...
A railroad car of mass 2.55 ✕ 104 kg moving at 3.25 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples...
A railroad car of mass 2.90 ? 104 kg moving at 3.05 m/s collides and couples with two coupled railroad cars, each of the same mass as the single car and moving in the same direction at 1.20 m/s. (a) What is the speed of the three coupled cars after the collision? m/s (b) How much kinetic energy is lost in the collision? J
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT