Question

There is a wind turbine that has three propeller blades (can be approximated as thin rods)...

There is a wind turbine that has three propeller blades (can be approximated as thin rods) that are 10.0kg in mass and 4.00m in length. The generator is not hooked up, so the blades can move freely. This means the only torque on the blades comes from the wind. The wind starts up and the blades go from rest to 3.00rad/s.

a. What is the angular acceleration of the turbine blades?

b. What is the moment of inertia (I) of the turbine?

c. What net torque on the turbine made the blades go from rest to 3.00rad/s in 60s?

d. What is the rotational kinetic energy of the turbine when the blades are traveling at 3.00rad/s?

e. What is the speed (in m/s) at the tip of the blades?

Homework Answers

Answer #1

I have taken the value of time 10 seconds for part A which is missing in problem.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wind turbine has a radius of 30 m, a moment of inertia of 9.0 ×...
A wind turbine has a radius of 30 m, a moment of inertia of 9.0 × 106kg⋅m2, and rotates with an initial angular speed of 2.0 rad/s. When the wind speed increases, the turbine experiences a net torque of 1.6× 105N⋅m. What is the linear speed of the tips of the turbine blades 27 s after the acceleration begins?
A propeller consists of two blades each 3.6 m in length and mass 108 kg each....
A propeller consists of two blades each 3.6 m in length and mass 108 kg each. The propeller can be approximated by a single rod rotating about its center of mass. The propeller starts from rest and rotates up to 1,210 rpm in 30 seconds at a constant rate. (Enter the magnitudes.) What is the angular momentum (in kg · m2/s) of the propeller at t = 10 s?
A ceiling fan consists of a small cylindrical disk with 5 thin rods coming from the...
A ceiling fan consists of a small cylindrical disk with 5 thin rods coming from the center. The disk has mass md = 3 kg and radius R = 0.24 m. The rods each have mass mr = 1.2 kg and length L = 0.72 m. 1) What is the moment of inertia of each rod about the axis of rotation? kg-m2 2) What is the moment of inertia of the disk about the axis of rotation? kg-m2 3) What...
A ceiling fan consists of a small cylindrical disk with 5 thin rods coming from the...
A ceiling fan consists of a small cylindrical disk with 5 thin rods coming from the center. The disk has mass md = 2.6 kg and radius R = 0.24 m. The rods each have mass mr = 1.4 kg and length L = 0.78 m. a) What is the moment of inertia of each rod about the axis of rotation? b) What is the moment of inertia of the disk about the axis of rotation? c) What is the...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5...
A child pushes her friend (m = 25 kg) located at a radius r = 1.5 m on a merry-go-round (rmgr = 2.0 m, Imgr = 1000 kg*m2) with a constant force F = 90 N applied tangentially to the edge of the merry-go-round (i.e., the force is perpendicular to the radius). The merry-go-round resists spinning with a frictional force of f = 10 N acting at a radius of 1 m and a frictional torque τ = 15 N*m...
The drawing shows two identical systems of objects; each consists of the same three small balls...
The drawing shows two identical systems of objects; each consists of the same three small balls connected by massless rods. In both systems the axis is perpendicular to the page, but it is located at a different place, as shown. The same force of magnitude F is applied to the same ball in each system (see the drawing). The masses of the balls are m1 = 8.2 kg, m2 = 5.3 kg, and m3 = 7.7 kg. The magnitude of...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with...
10.4-5-6) A) A car traveling on a flat (unbanked), circular track accelerates uniformly from rest with a tangential acceleration of 2.10 m/s2. The car makes it one quarter of the way around the circle before it skids off the track. From these data, determine the coefficient of static friction between the car and track. ________ (Hint: You are not given a value of the radius of the track. Think through the problem using the symbol R for this value and...
A playground merry-go-round has a radius of 1.5 m and mass of 200 kg, and turns...
A playground merry-go-round has a radius of 1.5 m and mass of 200 kg, and turns with negligible friction about a vertical axle through its center. A child applies a constant force that produces a torque of 50 N·m to the merry-go-round. Its moment of inertia is given by I = ½MR2. The next four questions have to do with this rotating merry-go-round. Determine the angular acceleration of the merry-go-round in rad/s2. a. 0.047 rad/s2 b. 0.222 rad/s2 c. 0.965...
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50...
1) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about its center and at rest. How fast is the rod spinning after 4.25 s? a. 32.6 rad/s b. 8.16 rad/s c. 97.9 rad/s d. 24.5 rad/s 2) A torque of 1.20 N m is applied to a thin rod of mass 2.50 kg and length 50.0 cm pivoted about one end and at rest. How fast is...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT