Question

A fire engine's siren is 1400 Hz when at rest. Assume that the speed of sound...

A fire engine's siren is 1400 Hz when at rest. Assume that the speed of sound is 343 m/s in air.

What frequency do you detect if you move with a speed of 21 m/s toward the fire engine? (Express your answer to two significant figures.)

What frequency do you detect if you move with a speed of 21 m/s away from the fire engine? (Express your answer to two significant figures.)

Homework Answers

Answer #1

Actual frequency of sirun = n =1400 Hz
apparent freq

n' = n [v - vo] / [v - vs]
--------------------------------------
in this combined formula, all v, vo, vs are moving in one direction (say +x). if 1 is in opposite direction, then it has to be resoved in +x.
v = speed of sound =343 m/s
------------------------------
a) let source (engine) at origin. vs =0 given
vo = - 30 m/s
(observer going to source, -ve x, so made in +x direction)
v = + 343 m/s
sound speed moving in + x (reaching observer)

n ' = 1400[343 - (-21)] / [343- 0]
n ' = 1400*[1.061] = 1485.71 Hz
--------------------------
b) away from engine
v=+343 , vo = + 21, vs =0
n ' = 1400[343 - 21] / [343 - 0]
n ' = 1400*[0.938] = 1314.28 Hz

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
(a) A fire truck with the 500 Hz siren on approaches an observer at 50 m/s,...
(a) A fire truck with the 500 Hz siren on approaches an observer at 50 m/s, who is at rest. What frequency would observer detect? (b) A fire truck with the 500 Hz siren on is at rest. An observer approaches the fire truck with the speed of 50 m/s. What frequency would the observer detect? (The speed of sound is 343 m/s.)
The siren of a fire engine that is driving northward at 32.0 m/s emits a sound...
The siren of a fire engine that is driving northward at 32.0 m/s emits a sound of frequency 2200 Hz . A truck in front of this fire engine is moving northward at 17.0 m/s . Part A What is the frequency of the siren's sound that the fire engine's driver hears reflected from the back of the truck? Part B What wavelength would this driver measure for these reflected sound waves?
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2550 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.2 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
The siren on an ambulance is emitting a sound whose frequency is 2650 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2650 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.3 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
The siren on an ambulance is emitting a sound whose frequency is 2450 Hz. The speed...
The siren on an ambulance is emitting a sound whose frequency is 2450 Hz. The speed of sound is 343 m/s. (a) If the ambulance is stationary and you (the "observer") are sitting in a parked car, what are the wavelength and the frequency of the sound you hear? (b) Suppose that the ambulance is moving toward you at a speed of 26.8 m/s. Determine the wavelength and the frequency of the sound you hear. (c) If the ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 845 Hz when an ambulance is traveling away from him with a speed of 45.0 m/s. Speed of sound in air = 343 m/s A) what is the frequency of the ambulance siren? Express your answer using three significant figures. B) Then the ambulance stopped for a few seconds while sounding the siren. A driver in a car that is coming towards the ambulance heard a frequency of 995 Hz....
A pedestrian standing on the sidewalk heard a frequency of 850 Hz when an ambulance is...
A pedestrian standing on the sidewalk heard a frequency of 850 Hz when an ambulance is travelling away from him with a speed of 45.0 m/s m / s . Speed of the sound in air = 343 m/s Part A What is the frequency of the ambulance's siren? Express your answer using three significant figures. Part B Then the ambulance stopped for a few seconds while sounding the siren. A driver in a car that is coming towards the...
You are on a county road driving at a speed of 28 m/s when you hear...
You are on a county road driving at a speed of 28 m/s when you hear the siren of an oncoming fire engine. As the fire engine approaches you, you hear the frequency of its siren as 2830 Hz, but once it has passed you the frequency becomes 1860 Hz. What is the speed of the fire engine? The speed of sound in air is 343 m/s.
A bystander hears a siren vary in frequency from 554 Hz to 390 Hz as a...
A bystander hears a siren vary in frequency from 554 Hz to 390 Hz as a fire truck approaches, passes by, and moves away on a straight street. What is the speed of the truck? (Take the speed of sound in air to be 343 m/s.)
A bystander hears a siren vary in frequency from 600 Hz to 394 Hz as a...
A bystander hears a siren vary in frequency from 600 Hz to 394 Hz as a fire truck approaches, passes by, and moves away on a straight street. What is the speed of the truck? (Take the speed of sound in air to be 343 m/s.)