Question

A car (mass = 1020 kg) is traveling at 27.2 m/s when it collides head-on with...

A car (mass = 1020 kg) is traveling at 27.2 m/s when it collides head-on with a sport utility vehicle (mass = 2900 kg) traveling in the opposite direction. In the collision, the two vehicles come to a halt. At what speed was the sport utility vehicle traveling?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the...
A 2.3-kg object traveling at 6.1 m/s collides head-on with a 3.5-kg object traveling in the opposite direction at 4.8 m/s. If the collision is perfectly elastic, what is the final speed of the 2.3-kg object?
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with...
Car A of mass 1,274 kg is traveling east at 13.2 m/s when it collides with car B of mass 1,596 kg which is traveling at 14.6 m/s at 71.4 degrees N of W. The two cars stick together after the collision. What is the magnitude of the final velocity of the cars?
a 4000kg truck traveling with a velocity of 20m/s due on South collides head on with...
a 4000kg truck traveling with a velocity of 20m/s due on South collides head on with a 1320kg car traveling with a velocity of 10m/s due north. two vehicles stick together after the collision. A. what are the magnitude and direction of the momentum of each vehicle prior to the collision? B. what are the magnitude and direction of the velocity of both vehicles after they collide?
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with...
A curling stone of mass 20 kg and initially traveling at 2.0 m/s collides head-on with a lighter stone of mass 15 kg which is initially at rest. After the collision the struck stone has a speed of 1.6 m/s in the same direction as the initial velocity of the heavy stone. a) What is the final velocity of the heavy stone? b) Is this collision elastic? Explain. If the collision is not elastic, find the macroscopic energy lost in...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at...
A 900-kg car traveling east at 15.0 m/s collides with a 750-kg car traveling north at 20.0 m/s. The cars stick together. What is the speed of the wreckage just after the collision? In what direction does the wreckage move just after the collision?
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling...
A 940 kg car traveling east at 12.3 m/s collides with a 670 kg car traveling north at 20.3 m/s . The cars stick together. Assume that any other unbalanced forces are negligible. A) In what direction does the wreckage move just after the collision? B) What is the speed of the wreckage just after the collision?
A cart of mass 2.50 kg moving with a speed of 4.00 m/s collides head-on with...
A cart of mass 2.50 kg moving with a speed of 4.00 m/s collides head-on with a 1.50 kg cart at rest. If the collision is elastic, what will be the speed and direction of each cart after the collision?
a 1500 kg car traveling at 40 m/s collides elastically with 3000 kg truck traveling 30...
a 1500 kg car traveling at 40 m/s collides elastically with 3000 kg truck traveling 30 m/s. if the speed of the car after the collision is 26.66 m/s, then the speed of the truck after the collision is how many m/s?
A large truck (mass 2,589 kg and speed 8.1 m/s) and a small car (mass 1,166...
A large truck (mass 2,589 kg and speed 8.1 m/s) and a small car (mass 1,166 kg and speed 23.8 m/s) going in opposite directions collide head on. After the collision the two vehicles stick together. Calculate their speed immediately after the collision.
A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with...
A railroad car of mass 22 500 kg is traveling east 5.50 m/s and collides with a railroad car of mass 30 000 kg traveling west 1.50 m/s. Find the velocity of the railroad cars that become coupled after the collision.