Question

A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...

A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1) ). The pulley has the shape of a uniform solid disk of mass 2.00 kg and diameter 0.520 m .

Part A

After the system is released, find the horizontal tension in the wire.

Part B

After the system is released, find the vertical tension in the wire.

Part C

After the system is released, find the acceleration of the box.

Part D

After the system is released, find magnitude of the horizontal and vertical components of the force that the axle exerts on the pulley.

Homework Answers

Answer #1

Equation for vertical motion. Let the vertical tension is T1 and hanging mass m1 (5kg) moves downard with acceleration a then

If the horizontal tension is T2 the equation of motion for second mass (12kg) will be

Pully will be under the influence of vertical and horizontal tension hence its equation of motion will be

By adding all the three equation we get

(a) Horizontal tension

(b) Vertical tension

(c) acceleration is

(d) Since the pully is not in linear motion hence net force on it will be zero hence horizontal force will be equal to T2 but opposite of it and vertical force is equal to T1 and it will also be opposite of it i.e.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley (the figure (Figure 1)). The pulley has the shape of a uniform solid disk of mass 2.20 kg and diameter 0.520 m .After the system is released, find the horizontal tension in the wire.After the system is released, find the vertical tension in the wire.After the system is released, find the acceleration...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by...
A 12.0-kg box resting on a horizontal, frictionless surface is attached to a 5.00-kg weight by a thin, light wire that passes without slippage over a frictionless pulley. The pulley has the shape of a uniform solid disk of mass 2.40 kg and diameter 0.420 m. A)After the system is released, find the horizontal tension in the wire. B) After the system is released, find the vertical tension in the wire. C)After the system is released, find the acceleration of...
A textbook of mass 2.09 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 2.09 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.130 m , to a hanging book with mass 3.02 kg . The system is released from rest, and the books are observed to move a distance 1.12 m over a time interval of 0.790 s . What is the tension in the part of the cord attached to the textbook? What is the tension...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to...
A textbook of mass 1.91 kg rests on a frictionless, horizontal surface. A cord attached to the book passes over a pulley whose diameter is 0.200 m, to a hanging book with mass 3.03 kg. The system is released from rest, and the books are observed to move a distance 1.19 mm over a time interval of 0.790 s. 1. What is the tension in the part of the cord attached to the textbook? 2. What is the tension in...
The system shown in the figure below consists of a mass M = 4.1-kg block resting...
The system shown in the figure below consists of a mass M = 4.1-kg block resting on a frictionless horizontal ledge. This block is attached to a string that passes over a pulley, and the other end of the string is attached to a hanging m = 2.4-kg block. The pulley is a uniform disk of radius 8.0 cm and mass 0.60 kg. (a) What is the acceleration of each block? acceleration of M = 4.1 kg acceleration of m...
A block of mass 1.970  kg is free to slide on a frictionless, horizontal surface. A cord...
A block of mass 1.970  kg is free to slide on a frictionless, horizontal surface. A cord attached to the block passes over a pulley whose diameter is 0.150  m , to a hanging book with mass 3.030  kg . The system is released from rest, and both the book and the block are observed to move a distance 1.19  m over a time interval of 0.780  s ; at the instant at which that distance is measured, the book is still moving downwards and...
A 4.00 kg stone is tied to a thin, light wire wrapped around the outer edge...
A 4.00 kg stone is tied to a thin, light wire wrapped around the outer edge of the uniform 10.0 kg cylindrical pulley shown in the figure below (Figure 1). The inner diameter of the pulley is 60.0 cm , while the outer diameter is 1.00 m . The system is released from rest, and there is no friction at the axle of the pulley. a) Find the acceleration of the stone. b) Find the tension in the wire. c)...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a...
Two masses, m1= 1.00 kg and m2= 2.00 kg, are attached to the ends of a light cord, which passes over a frictionless pulley in the shape of a uniform disk of mass 3.00 kg. How long does it take the 2.00 kg mass to fall a vertical distance of 1.00 m? What is the tension of either side of the pulley? (Answers: t= 0.958 sec; T1= 12.0 N; T2= 15.2 N I just need help with the steps for...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope...
Block A, mass 5.00 kg, rests on a surface with μk = 0.600. A massless rope is attached to its right side, and runs over a pulley, treated as a thin ring, mass 1.00 kg and radius 5.00 cm, to Block B, mass 7.00 kg, which hangs from the rope and is held at rest. The rope does not slip over the pulley, and the pulley spins on a frictionless axle. Block B is released from rest, and after an...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30...
1. A 4 kg mass is resting on a ramp inclined at an angle of 30 degrees with respect to the horizontal. A string is attached to the 4 kg mass and passes over a frictionless pulley and is connected to a 5 kg mass hanging over the side. If the coefficient of friction between the ramp and the 4 kg mass if 0.3 find; A) The acceleration of both masses B) The tension in the string C) Find the...