Question

A laser is directed at a double slit with spacing 0.4 mm. The pattern is projected...

A laser is directed at a double slit with spacing 0.4 mm. The pattern is projected on a screen 6 m away. The first bright spot is measured to be 0.0055 meters above the middle. To what angle does the first bright spot correspond? What is the wavelength of the laser? To what angle does the third dark spot correspond? How far is the third order dark spot from the middle?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of...
1. A 680 nm laser illuminates a double slit apparatus with a slit separation distance of 7.83 μm. On the viewing screen, you measure the distance from the central bright fringe to the 2nd bright fringe to be 88.2 cm. How far away (in meters) is the viewing screen from the double slits?   2. A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double...
A 600 nm laser shines through a double slit in which the two slits are 0.8...
A 600 nm laser shines through a double slit in which the two slits are 0.8 mm apart, and each slit is 0.1 mm wide. Sketch what the pattern would look like on a screen 3 m away and indicate the central maximum. How many bright spots lie between the first single-slit minimums on either side? How far away is that first single-slit minimum from the center of the pattern? (you may assume the small angle approximations)
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on...
Using a 697-nm wavelength laser, you form the diffraction pattern of a 0.105-mm wide slit on a screen. You measure on the screen that the 11th dark fringe is 9.19 cm away from the center of the central maximum. How far is the screen located from the slit?
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
In a double-slit experiment, the second-order bright fringe is observed at an angle of 0.51°. If...
In a double-slit experiment, the second-order bright fringe is observed at an angle of 0.51°. If the slit separation is 0.11 mm, then what is the wavelength of the light? _____??? Two narrow slits are illuminated by a laser with a wavelength of 514 nm. The interference pattern on a screen located x = 4.60 m away shows that the third-order bright fringe is located y = 9.00 cm away from the central bright fringe. Calculate the distance between the...
a) A laser beam is incident on a single slit of width 0.020 mm. On a...
a) A laser beam is incident on a single slit of width 0.020 mm. On a viewing screen placed 1.20 m away from the slit, the first minimum is observed at a distance 2.40 cm from the center of the screen. What is the wavelength of the laser used (in nm)? [6] (b) Laser light of wavelength 480 nm is incident on a transmission grating with 2000 groves/cm. How far away from the center of a screen placed at a...
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide...
Using a 687 nm wavelength laser, you form the diffraction pattern of a 1.1 mm wide slit on a screen. You measure on the screen that the 14th dark fringe is 9.11 cm away from the center of the central maximum. How far is the screen located from the slit? The answer is not 10.419 m
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55...
A 600 nm laser illuminates a double slit apparatus with a slit separation distance of 3.55 μm. The viewing screen is 1.50 meters behind the double slits. What is the distance (in meters) from the central bright fringe to the 3nd dark fringe?
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm...
A laser with wavelength d/8 is shining light on a double slit with slit separation 0.400mm . This results in an interference pattern on a screen a distance L away from the slits. We wish to shine a second laser, with a different wavelength, through the same slits. A) What is the wavelength ?2 of the second laser that would place its second maximum at the same location as the fourth minimum of the first laser, if d = 0.400mm...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT