Question

Two cars collided at an intersection. Their frames became enmeshed and then they moved together as...

Two cars collided at an intersection. Their frames became enmeshed and then they moved together as one object.

As an accident investigator on the scene, you were able to determine that car A, of mass 1900 kg, was initially traveling eastwards. You found that car B, of mass 1700 kg, had an onboard computer that registered its southwards velocity of 20 m/s. The tire skid marks on the pavement show that they both moved −25° south of east.

You are needed to determine the following information. Please round your calculations to 4 significant figures.


1.)   Their velocity in the y direction after the collision or vfy: m/s.

2.) The magnitude of their total velocity after collision or vf: m/s.

3.) Their velocity in the x direction after the collision or vfx: m/s.

4.) Car A's initial velocity before collision or viAx: m/s.

5.) As the posted speed limit for both roads is 30 mph, were either car speeding before the collision? Respond with car A, car B, both or neither: .

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is...
Two cars collide at an intersection. Car A, with a mass of 2000 kg , is going from west to east, while car B , of mass 1400 kg , is going from north to south at 17.0 m/s . As a result of this collision, the two cars become enmeshed and move as one afterward. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
Two cars collide at an intersection. Car A, with a mass of 1800 kg , is...
Two cars collide at an intersection. Car A, with a mass of 1800 kg , is going from west to east, while car B , of mass 1300 kg , is going from north to south at 16 m/s . As a result of this collision, the two cars become enmeshed and move as one afterwards. In your role as an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle...
Two cars collide at an intersection. Car A, with a mass of 2000 kg, is going...
Two cars collide at an intersection. Car A, with a mass of 2000 kg, is going from west to east, while car of mass 1500 kg, is going from north to south at 15 m/s. As a result, the two cars become enmeshed and move as one. As an expert witness, you inspect the scene and determine that, after the collision, the enmeshed cars moved at an angle of 52∘ south of east from the point of impact. How fast...
A truck of mass 5000 kg was moving north at 45 km/h when it collided with...
A truck of mass 5000 kg was moving north at 45 km/h when it collided with a car of mass 1250 kg moving east at 90 km/h. Find the magnitude and direction of thre velocity of the vehicles after the collision, assuming they became entangled and moved together.
An automobile has a mass of 2300 kg and a velocity of positive 16 m/s. It...
An automobile has a mass of 2300 kg and a velocity of positive 16 m/s. It makes a rear end collision with a stationary car whose mass is 1800 kg. The cars locked bumpers and skid off together with the wheels locked. A) what is the velocity of the two cars just after the collision. B) find the impulse, magnitude and direction, the acts on the skidding cars from just after the collision until they come to a halt. C)...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1300 kg and was approaching at 5.00 m/s due south. The second car has a mass of 900 kg and was approaching at 23.0 m/s due west. (a) Calculate the final velocity (magnitude in m/s and direction in degrees counterclockwise from the west) of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1650 kg and was approaching at 5.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars (In m/s). (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1250 kg and is approaching at 9.5 m/s due south. The second car has a mass of 550 kg and is approaching at 17 m/s due west.Calculate the direction of the final velocity, in degrees south of west, of the cars.What is the change in kinetic energy, in joules, for the collision? (This energy goes into deformation of the cars.)  
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1050 kg and was approaching at 9.00 m/s due south. The second car has a mass of 800 kg and was approaching at 20.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...
Two cars collide at an icy intersection and stick together afterward. The first car has a...
Two cars collide at an icy intersection and stick together afterward. The first car has a mass of 1500 kg and was approaching at 4.00 m/s due south. The second car has a mass of 700 kg and was approaching at 18.0 m/s due west. (a) Calculate the final velocity of the cars. (Note that since both cars have an initial velocity, you cannot use the equations for conservation of momentum along the x-axis and y-axis; instead, you must look...