Question

A space vehicle, of mass 505 kg, experiences a gravitational force (pull) from Earth of 258...

A space vehicle, of mass 505 kg, experiences a gravitational force (pull) from Earth of 258 N.

The mass of Earth is 5.98 x 10^24 kg. Radius of the Earth = 6.38 x 10^6 m, G = 6.67 x 10^-11 N-m2/kg2

a) How far is the vehicle from the center of the Earth?

b) How far is the space vehicle above the surface of the Earth?

PD: explanation with units, please.

Homework Answers

Answer #1

Hope it helps.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of...
An earth satellite remains in orbit at a distance of 1.7100×104 km from the center of the earth. The Universal Gravitational Constant is 6.67×10−11 N⋅m2/kg2 and the mass of the earth is 5.98×1024 kg. Part A What speed (in m/s) would the satellite have to maintain? Express your answer using three significant figures. Credit: 3 pts.
1) Find the magnitude of the gravitational force a 69.6 kg person would experience while standing...
1) Find the magnitude of the gravitational force a 69.6 kg person would experience while standing on the surface of Earth with a mass of 5.98 × 1024 kg and a radius of 6.37 × 106 m. The universal gravitational constant is 6.673 × 10−11 N · m2 /kg^2 Answer in units of N. 2) Find the magnitude of the gravitational force on Mars, with a mass of 6.34 × 1023 kg and a radius of 3.43 × 106 m....
The Earth (mass = 6.0 x 1024 kg) and the Moon (mass = 7.3 x 1022...
The Earth (mass = 6.0 x 1024 kg) and the Moon (mass = 7.3 x 1022 kg) are separated by an average distance of about 3.8 x 105 km. What is the gravitational force between them? (G = 6.67 x 10-11 N m2 / kg2) A.  7.7 x 1028 N B. 7.7 x 1031 N C. 2.0 x 1026 N D. 2.0 x 1020 N
Calculate, using Newton's law of gravity, the size of the force of attraction between the earth...
Calculate, using Newton's law of gravity, the size of the force of attraction between the earth and a mass of 2.0 kg on the earth. Data: Distance to the center of earth from the surface = 6370 km. Mass of earth = 5.98·1024kg. Gravitational constant G = 6.67·10-11 Nm2/kg2. Calculate, using Newton's law of gravity, the size of the force of attraction between the moon and a mass of 2.0 kg on the earth's surface nearest the moon. Data: Distance...
A satelite in a circular orbit has an orbital period of 189 minutes . On Earth...
A satelite in a circular orbit has an orbital period of 189 minutes . On Earth the satelite weighs 980 N. The earth's mass is 5.97 × 1024 kg, its equatorial radius is 6.3 × 106 m, and G = 6.67 × 10−11 N • m2/kg2. How far is the satellite above the earths surface? How far is it from the earths surface? If the weight of the satelite on Earth were 8820 N instead of the 980 N given...
A 120 kg satellite experiences a gravitational force by the Earth of 940 N. What is...
A 120 kg satellite experiences a gravitational force by the Earth of 940 N. What is the radius of the satellite's orbit? km What is its altitude? Km
A 135 kg satellite experiences a gravitational force by the Earth of 680 N. What is...
A 135 kg satellite experiences a gravitational force by the Earth of 680 N. What is the radius of the satellite's orbit? . km What is its altitude? Incorrect: . km
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the...
A satellite of mass 1525 kg is in circular orbit around Earth. The radius of the orbit of the satellite is equal to 1.5 times the radius of Earth (RE = 6.378*106 m, ME = 5.98*1024 kg, G = 6.67*10-11 Nm2/kg2). (a) Find the orbital period of the satellite? (b) Find the orbital (tangential) velocity of the satellite.  (c) Find the total energy of the satellite?
If a 2500 kg rocket is launched from the Earth's surface at a speed of 5...
If a 2500 kg rocket is launched from the Earth's surface at a speed of 5 km/s, how high can it reach before it returns back down?(Mass of Earth is 5.98 x 10^24kg, radius is 6.38 x 10^6m)? Find the gravitational accelerations at this highest point. This would be the initial downward acceleration of the rocket.
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational...
On the way to the moon, the Apollo astronauts reach a point where the Moon’s gravitational pull is stronger than that of Earth’s. Find the distance of this point from the center of the Earth. The masses of the Earth and the Moon are 5.98 × 1024 kg and 7.36 × 1022 kg, respectively, and the distance from the Earth to the Moon is 3.84 × 108 m. Answer in units of m. b) What would the acceleration of the...