Question

A piano wire with mass 3.35 grams and a length of 78.0cm is stretched with a...

A piano wire with mass 3.35 grams and a length of 78.0cm is stretched with a tension of 28.0N. A wave with a frequency 120Hz and an amplitude 1.60 mm travels along the wire. Calculate the power carried by the wave? What happens to the average power if the waves amplitude is halved?

Homework Answers

Answer #1

***************************************************************************************************
This concludes the answers. If there is any error, let me know immediately so that I can fix it...

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A piano wire with mass 2.95 g and length 79.0 cmis stretched with a tension of...
A piano wire with mass 2.95 g and length 79.0 cmis stretched with a tension of 25.0 N . A wave with frequency 100 Hz and amplitude 1.50 mm travels along the wire. Part A Calculate the average power carried by the wave. Part B What happens to the average power if the wave amplitude is halved?
A tension of 30.0 N stretches a wire of mass 5.00 g and length 1.20 m....
A tension of 30.0 N stretches a wire of mass 5.00 g and length 1.20 m. Waves of amplitude 1.50 mm and frequency 60.0 Hz travel along the wire. (a) Determine the average power transmitted by these waves. (b) By what factor does the average power change if the amplitude of the waves is doubled?
A steel wire in a piano has a length of 0.5000 m and a mass of...
A steel wire in a piano has a length of 0.5000 m and a mass of 4.200 10-3 kg. To what tension must this wire be stretched so that the fundamental vibration corresponds to middle C (fC = 261.6 Hz on the chromatic musical scale)? -------- Two pieces of steel wire with identical cross sections have lengths of L and 2L. The wires are each fixed at both ends and stretched so that the tension in the longer wire is...
A steel wire in a piano has a length of 0.900 m and a mass of...
A steel wire in a piano has a length of 0.900 m and a mass of 5.800 ✕ 10−3 kg. To what tension must this wire be stretched so that the fundamental vibration corresponds to middle C (fC = 261.6 Hz on the chromatic musical scale)? N
A steel wire in a piano has a length of 0.650 m and a mass of...
A steel wire in a piano has a length of 0.650 m and a mass of 4.09E-3 kg. To what tension must this wire be stretched in order that the fundamental vibration correspond to middle C (fc = 261.6 Hz on the chromatic musical scale)? REPORT IN 4 DECIMALS
Q1 a long string of mass per unit length 0.2kgm^-1 is stretched to a tension of...
Q1 a long string of mass per unit length 0.2kgm^-1 is stretched to a tension of 500N. (i) Find the speed of the transverse wave on the string (ii) Find the mean power required to maintain a travelling wave of amplitude 10mm and wavelength 0.5m. (iii) If the string is joined to another one of mass per unit length 0.8kgm^-1, what fraction of the power carried by the wave is transmitted tothe second string?
A stretched string has a mass per unit length of 5.00 g/cm and a tension of...
A stretched string has a mass per unit length of 5.00 g/cm and a tension of 10.0 N. A sinusoidal wave on this string has an amplitude of 0.12 mm and a frequency of 100 Hz and is travel- ing in the negative direction of an x axis. What are the (a) speed, (b) wavelength, and (c) period of the wave?
A wire with mass 55.0 g is stretched so that its ends are tied down at...
A wire with mass 55.0 g is stretched so that its ends are tied down at points 100 cm apart. The wire vibrates in its fundamental mode with frequency 65.0 Hz and with an amplitude of 0.800 cm at the antinodes. a.What is the speed of propagation of transverse waves in the wire? b.Compute the tension in the wire.
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m....
A particular guitar string has a mass of 3.0 grams and a length of 0.75 m. when it is stretched, it produces a transverse wave of frequency 1200 Hz and wavelength 2/3 of the length of the string. (i) What is the speed of the transverse wave on the string? (ii) What is the tension of the string?
A long string of mass per unit length of 0.65 g/m is attached at the point...
A long string of mass per unit length of 0.65 g/m is attached at the point x = 0 to another long string of mass per unit length of 0.52 g/m. The strings are stretched out under a constant tension T = 81 N. A wave of amplitude 1.8 cm and wavelength 11 cm is generated in the lighter string. 1 (a) What is the speed of the wave in the lighter string? (b) What are the speed and wavelength...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT