Question

Two metal spheres each have a radius of 10.0 cm. The centers of the two spheres...

Two metal spheres each have a radius of 10.0 cm. The centers of the two spheres are 54.1 cm apart. The spheres are initially neutral, but a charge Q is transferred from one sphere to the other, creating a potential difference between the spheres of 107 V. A proton is released from rest at the surface of the positively charged sphere and travels to the negatively charged sphere.

(a) What is the proton's kinetic energy just as it strikes the negatively charged sphere?
( ) eV

(b) At what speed does it strike the sphere?

( ) m/s

Homework Answers

Answer #1

Part A.

Using energy conservation between initial and final position of proton,

KEi + PEi = KEf + PEf

KEi = 0, since proton is released from rest

KEf = final KE when proton reaches at negatively charged sphere's location

PEf - PEi = W = q*dV

dV = Potential difference between both spheres = 107 V

q = charge on proton = 1.6*10^-19 C = +e

So,

KEf = KEi + PEi - PEf

KEf = 0 + q*dV

KEf = e*(107 V)

KEf = 107 eV

Part B.

KEf = (1/2)*m*Vf^2

Vf = sqrt (2*KEf/m)

KEf = 107 eV = 107*1.6*10^-19 J

So,

Vf = sqrt (2*107*1.6*10^-19/(1.67*10^-27))

Vf = 1.43*10^5 m/s = Speed of proton when it strikes the sphere

Let me know if you've any query.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two equally charged, 1.00 g spheres are placed with 2.00 cm between their centers. When released,...
Two equally charged, 1.00 g spheres are placed with 2.00 cm between their centers. When released, each begins to accelerate at 225 m/s2 . a. Provide a visual overview two charged spheres placed apart on x-y coordinate system. Also indicate any forces that are active on these spheres at rest. b. Compute electric forces excreted by spheres on each other. c. Derive the equation that relates acceleration of spheres to charges. d. What is the magnitude of the charge on...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 32.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0750 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.100 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 47.8 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0720 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Two metal spheres, each of radius 3.9 cm, have a center-to-center separation of 2.2 m. Sphere...
Two metal spheres, each of radius 3.9 cm, have a center-to-center separation of 2.2 m. Sphere 1 has a charge of +1.4 × 10-8 C; sphere 2 has a charge of -3.8 × 10-8 C. Assume that the separation is large enough for us to assume that the charge on each sphere is uniformly distributed (the spheres do not affect each other). With V = 0 at infinity, calculate in volts (a) the potential at the point halfway between their...
Two metal spheres, each of radius 3.7 cm, have a center-to-center separation of 2.3 m. Sphere...
Two metal spheres, each of radius 3.7 cm, have a center-to-center separation of 2.3 m. Sphere 1 has a charge of +1.1 × 10^-8 C; sphere 2 has a charge of -3.4 × 10^-8 C. Assume that the separation is large enough for us to assume that the charge on each sphere is uniformly distributed (the spheres do not affect each other). With V = 0 at infinity, calculate in volts (a) the potential at the point halfway between their...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 34.8 cm apart (center to center) and repel each other with an electrostatic force of ?1=0.0675 N . A thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed, the spheres still repel, but with a force of ?2=0.115 N . The Coulomb force constant is ?=1/(4??0)=8.99×109 N⋅m2/C2 . Using this information, find the initial charge on each sphere,...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm...
There are two identical, positively charged conducting spheres fixed in space. The spheres are 49.0 cm apart (center to center) and repel each other with an electrostatic force of F1 = 0.0705 N. Then, a thin conducting wire connects the spheres, redistributing the charge on each sphere. When the wire is removed the spheres still repel but with a force of F2 = 0.115 N. Using this information, find the initial charge on each sphere, q1 and q2 if initially...
Two conducting spheres are separated by 1.5 cm. One sphere is charged such that its total...
Two conducting spheres are separated by 1.5 cm. One sphere is charged such that its total charge is 32 nC. The other sphere is electrically neutral (has no net charge). A) Is there an apparent charge distribution on the neutral sphere due to the charged sphere? Qualitatively answer this using diagrams and terminology such as charge by induction, charge by conduction, dipole, octopole, etc. B) Imagine the spheres were allowed to touch for a brief moment and then separated back...
Two small metal spheres are 26.0 cm apart. The spheres have equal amounts of negative charge...
Two small metal spheres are 26.0 cm apart. The spheres have equal amounts of negative charge and repel each other with a force of 0.036 N. What is the charge on each sphere? A +2.5 nC point charge is 3.3 cm away from a -3.1 nC point charge. What are the magnitude and direction of the acceleration of an electron at a point where the electric field has magnitude 6600 N/C and is directed due north?
Two 0.60 g spheres are charged equally and placed 2.3 cm apart. When released, they begin...
Two 0.60 g spheres are charged equally and placed 2.3 cm apart. When released, they begin to accelerate at 100 m/s2 . What is the magnitude of the charge on each sphere?