Question

Suppose that 2.8 moles of a monatomic ideal gas (atomic mass = 4.7

Suppose that 2.8 moles of a monatomic ideal gas (atomic mass = 4.7

Homework Answers

Answer #1

1)

dQ = dU = n*Cv*dT = 2.8*12.47*(500-300) = 6983.2 J

---------------------

2)

here as the volume is constant the work done is zero


--------------------


3)
fromideal gas equation


P2*V = n*R*T2


P2 = n*R*T2/V


P2 = (2.8*8.314*500)/0.28 = 41570 Pa


---------------------------

d)


n = m/M


M = m/n = n*N*u/m = N*u = 6.022e23*1.63e-26 = 0.00981586


Vavg = sqrt(3RT2/M)

Vavg = sqrt(3*8.314*500)/(0.00981586) = 1127.2 m/s


-----------------------

5)
dQ = n*Cp*dT = 2.8*20.79*(500-300) = 11642.4 J

--------------------
6)

W = dQ - dU = 11642.4 - 6983 = 4659.4 J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Suppose that 2.8 moles of an ideal diatomic gas has a temperature of 1003 K, and...
Suppose that 2.8 moles of an ideal diatomic gas has a temperature of 1003 K, and that each molecule has a mass 2.32
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of...
The volume of a monatomic ideal gas doubles in an adiabatic expansion. Considering 115 moles of gas with an initial pressure of 350 kPa and an initial volume of 1.4 m3 . Find the pressure of the gas after it expands adiabatically to a volume of 2.8 m3 . Pf= 110 kPa Find the temperature of the gas after it expands adiabatically to a volume of 2.8 m3 .
8. Three moles of a monatomic ideal gas are heated at a constant volume of 2.10...
8. Three moles of a monatomic ideal gas are heated at a constant volume of 2.10 m³. The amount of heat added is 5.3 x 10^3J. Determine the change in pressure.
During an adiabatic process, the temperature of 3.92 moles of a monatomic ideal gas drops from...
During an adiabatic process, the temperature of 3.92 moles of a monatomic ideal gas drops from 485 oC to 205 oC. For this gas, find (a) the work done by the system and (b) the net heat absorbed by the system.
A sealed 51 m3 tank is filled with 9000 moles of ideal oxygen gas (diatomic) at...
A sealed 51 m3 tank is filled with 9000 moles of ideal oxygen gas (diatomic) at an initial temperature of 270 K. The gas is heated to a final temperature of 330 K. The atomic mass of oxygen is 16.0 g/mol. The mass density of the oxygen gas, in SI units, is closest to 11 4.2 5.6 2.8 7.1
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3....
Three moles of a monatomic ideal gas are heated at a constant volume of 2.90 m3. The amount of heat added is 5.10 103 J. (a) What is the change in the temperature of the gas? _____K (b) Find the change in its internal energy. _____J (c) Determine the change in pressure. _____Pa
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the...
Three moles of an ideal monatomic gas expand at a constant pressure of 2.90atm : the volume of the gas changes from 3.30*10^-2m^3 to 4.50*10^-2m^3. Part A, Calculate the initial temperature of the gas. Part B, Calculate the final temperature of the gas. Part C, Calculate the amount of work the gas does in expanding. Part D, Calculate the amount of heat added to the gas. Part E, Calculate the change in internal energy of the gas.
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally...
A monatomic ideal gas containing 7.95 moles at a temperature of 235 K are expanded isothermally from a volume of 1.23 L to a volume of 4.44 L. a) Sketch a P vs.V graph. b) Calculate the work done by the gas. c) Calculate the heat flow into or out of the gas. d) If the number of moles is doubled, by what factors do your answers to parts (b) and (c) change? Explain.
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume...
Five moles of monatomic ideal gas have initial pressure 2.50 × 103 Pa and initial volume 2.10 m3. While undergoing an adiabatic expansion, the gas does 1180 J of work.​ What is the final pressure of the gas after the expansion?​ in kPa