Question

A proud deep-sea fisherman hangs a 64.0-kg fish from an ideal spring having negligible mass. The fish stretches the spring 0.135 m.

(a) Find the force constant of the spring.

N/m

The fish is now pulled down 5.75 cm and released.

(b) What is the period of oscillation of the fish?

s

(c) What is the maximum speed it will reach?

m/s

Answer #1

given the spring mass is negligible

the mass of the fish hanging = 64kg

(a) Find the force constant of the spring.

N/m

The fish is now pulled down 5.75 cm and released.

(b) What is the period of oscillation of the fish?

s

(c) What is the maximum speed it will reach?

m/s

mass of fish m=65kg then , dx=0.135m, A=0.0575

Since F=k * dx=mg ->

we got

k=mg/(dx)

force constant K= 64*9.8/0.0575

the spring constant F= 10907.82

b) w=sqrt(k/m)=sqrt(g/dx)

W= sqrt (9.8/0.135)

W = sqrt(72.59)

W= 8.520

c) vmax=Aw=Asqrt(g/dx)

Vmax= AW =0.0575*8.520

Vmax= 0.4899m/s

To use Newton's 2nd law as well as energy conservation for a
vertical mass-spring
A proud deep-sea fisherman hangs a 65.0-kgkg fish from an ideal
spring having negligible mass. The fish stretches the spring from
its initial equilibrium position until it comes to a new
equilibrium position, which is 0.120 mm below the initial
equilibrium position.
a)Draw a force diagram of the fish at its new equilibrium
position. Then use Newton's 2nd law to solve for the spring
constant of...

A spring with spring constant 17 N/m hangs from the ceiling. A
ball is attached to the spring and allowed to come to rest. It is
then pulled down 9.5 cm and released. The ball makes 32
oscillations in 16 s seconds. What is its maximum speed?

An object of mass 2 kg hangs from a spring of negligible mass.
The sping is extended by 2.5 cm when the object is attached. The
top end of spring is oscillated up and down in simple harmonic
motion with and amplitude of 1 mm. The quality factor, Q, of the
system is 15.
a. What is Wo (undamped frequency) for the system?
b. What is the amplitude of forced oscillation at W = Wo
c. What is the mean...

A spring/mass system is shown in four different states:
The spring hangs vertically in equilibrium with no mass at its
end.
A 2.6 kg mass hangs from the spring in equilibrium, stretching
the spring b=5.7 cm.
The mass is pulled down a distance c and released.
The mass is at the reference height moving with a speed of
v=8.4 m/s.
How far down (c) was the mass pulled before it was
released? (Hint: you can calculate the spring constant with...

A 0.1-kg ball is attached to the end of an ideal spring having a
force constant (spring constant) of 600 N/m.
If the spring is compressed 18 cm and released, what is the
speed of the ball when it reaches a distance of 12 cm from the
equilibrium position?
Determine the period.
Determine the amplitude.
Determine the maximum speed.
Determine the total energy.

A mass of 0.6 kg stretches spring 12 cm. The mass is pulled down
an additional 5 cm and released. a)Find frequency of oscillation,
b) maximum kinetic energy, and c) total energy at a point 3 cm.
from the equilibrium.

A block with mass m =6.2 kg is hung from a vertical spring. When
the mass hangs in equilibrium, the spring stretches x = 0.22 m.
While at this equilibrium position, the mass is then given an
initial push downward at v = 4.6 m/s. The block oscillates on the
spring without friction.
What is the spring constant of the spring?
2)
What is the oscillation frequency?
After t = 0.32 s what is the speed of the block?
What...

A block with mass m =7.5 kg is hung from a vertical spring. When
the mass hangs in equilibrium, the spring stretches x = 0.25 m.
While at this equilibrium position, the mass is then given an
initial push downward at v = 4.1 m/s. The block oscillates on the
spring without friction.
After t = 0.3 s what is the speed of the block?
What is the magnitude of the maximum acceleration of the
block?
At t = 0.3...

A mass of 0.3 kg hangs motionless from a vertical spring whose
length is 0.83 m and whose unstretched length is 0.54 m. Next the
mass is pulled down to where the spring has a length of 1.03 m and
given an initial speed upwards of 1.4 m/s. What is the maximum
length of the spring during the motion that follows?

A block with mass m =7.3 kg is hung from a vertical spring. When
the mass hangs in equilibrium, the spring stretches x = 0.29 m.
While at this equilibrium position, the mass is then given an
initial push downward at v = 5 m/s. The block oscillates on the
spring without friction.
1) What is the spring constant of the spring? N/m Submit
2) What is the oscillation frequency? Hz Submit
3) After t = 0.45 s what is...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 8 minutes ago

asked 12 minutes ago

asked 32 minutes ago

asked 33 minutes ago

asked 39 minutes ago

asked 42 minutes ago

asked 42 minutes ago

asked 48 minutes ago

asked 54 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago