Question

Two identical particles moving along the positive x-axis, the first with velocity 2v0 and the second...

Two identical particles moving along the positive x-axis, the first with velocity 2v0 and the second with velocity v0 respectively. They collide in an elastic head on collision. After the collision, the velocities of the two particles are respectively

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic...
A particle of 1kg moving with 11m/s in the positive x-axis direction makes a head-on elastic collision with a stationary particle of mass 3kg. After collision, the two particles rebound along the x-axis. What is the final velocity of the lighter object?
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic...
A 1-kg particle moving with 14 m/sm/s   in the positive x-axis direction makes a head-on elastic collision with a stationary 3-kg particle. After collision, the two particles rebound along the x-axis. What is the final velocity of the 1-kg particle?
Two particles with masses 4m and 3m are moving toward each other along the x axis...
Two particles with masses 4m and 3m are moving toward each other along the x axis with the same initial speeds vi. The particle with mass 4m is traveling to the left, and particle 3m is traveling to the right. They undergo a head-on elastic collision and each rebounds along the same line as it approached. Find the final speeds of the particles. particle 4m                                    
Two particles with masses 2m and 9m are moving toward each other along the x axis...
Two particles with masses 2m and 9m are moving toward each other along the x axis with the same initial speeds vi. Particle 2m is traveling to the left, while particle 9m is traveling to the right. They undergo an elastic glancing collision such that particle 2m is moving downward after the collision at right angles from its initial direction. (a) Find the final speeds of the two particles. particle 2m: ____ ✕ vi particle 9m: ____ ✕ vi (b)...
Two particles are moving toward each other along the x axis with equal speeds. Specifically, particle...
Two particles are moving toward each other along the x axis with equal speeds. Specifically, particle 1 of mass 7 kg moves to the right at 3.87 m/s and particle 2 of mass 15 kg moves to the left at the same speed. The particles collide elastically. After the collision, the first particle moves at 90◦ to its original direction while the second particle is deflected through a smaller angle θ2 < 90◦. A) Find the final speed of particle...
Two particles with masses m and 4m are moving toward each other along the x axis...
Two particles with masses m and 4m are moving toward each other along the x axis with the same initial speeds vi. Particle m is traveling to the left, while particle 4m is traveling to the right. They undergo an elastic, glancing collision such that particle m is moving in the negative y direction after the collision at a right angle from its initial direction. (a) Find the final speeds of the two particles in terms of vi. particle m__________...
A billiard ball with a mass of 4 g is moving east while a second ball...
A billiard ball with a mass of 4 g is moving east while a second ball with a mass of 3 g moves west. Positive x axis is due east. The two balls come into head on collision while moving in their respective velocities. Assume that the motion is one dimensional and the collision is perfectly elastic. If the initial velocities of the balls are 12 cm/s and 10 cm/s, what are the velocities of each ball after the collision?
Consider the collision of two identical particles. The masses of the two particles are therefore equal...
Consider the collision of two identical particles. The masses of the two particles are therefore equal m1=m2. The initial velocity of particle 1 is v1 and particle two is initially at rest. After an elastic head on collision, the final velocity of particle two is is v'2 and is given by...
An object with a mass of 47.3 g is moving uniformly with a velocity of 39.9...
An object with a mass of 47.3 g is moving uniformly with a velocity of 39.9 m/s along the positive x-axis. A second object, of mass 36.0 g, is moving at +8.9 m/s along the same line, in front of the first mass. a) Using the usual sign conventions, what is the velocity of the centre-of-mass of the two objects? b) What is the velocity of the first particle, in the zero momentum frame, after an elastic collision? c) Using...
Two trains are on a collision course along the x axis. The first train starts at...
Two trains are on a collision course along the x axis. The first train starts at the origin and moves with constant velocity v1=3.7 m/s. The second train starts from rest at some unknown positive x position D, and accelerates with a2=-0.79 m/s2 . The trains collide in a time t=28 s. Find the distance D.