Question

A wheel free to rotate about its axis that is not frictionless is initially at rest....

A wheel free to rotate about its axis that is not frictionless is initially at rest. A constant external torque of +58 N·m is applied to the wheel for 16 s, giving the wheel an angular velocity of +575 rev/min. The external torque is then removed, and the wheel comes to rest 120 s later. (Include the sign in your answers.)

1) Find the moment of inertia of the wheel.

2) Find the frictional torque, which is assumed to be constant.

Homework Answers

Answer #1

the applied torque on the wheel T(tau)=Iw /t

58 =I(575)(pie)/30) /16 =575(3.14)( I ) /30(16) here I=moment of inertia w=angular velocity

the moment of inertia=I=15.42 kg)m2

when the wheel gains 575rev/min torque is removed the frictional torque will act on it to stop rotation

applying work energy theorem work done by frictional torque = its initial kinetic energy at frictional torque acts

Wfriction =(1/2)(Iw2)=0.5(15.42)(575(3.14) /30 )2   =27928.88J

but Work done by friction =(T(tau)(1/2)(wt) =T(0.5)(575(3.14/30)(120)=3611T

so T(3611)=27928.88 finally torque =27928.88/3611=7.73Nm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A wheel free to rotate about its axis that is not frictionless is initially at rest....
A wheel free to rotate about its axis that is not frictionless is initially at rest. A constant external torque of +52 N·m is applied to the wheel for 23 s, giving the wheel an angular velocity of +640 rev/min. The external torque is then removed, and the wheel comes to rest 120 s later. (Include the sign in your answers.) (a) Find the moment of inertia of the wheel.   kg·m2 (b) Find the frictional torque, which is assumed to...
The combination of an applied force and a constant frictional force produces a constant total torque...
The combination of an applied force and a constant frictional force produces a constant total torque of 35.8 N·m on a wheel rotating about a fixed axis. The applied force acts for 6.04 s. During this time the angular speed of the wheel increases from 0 to 10.2 rad/s. The applied force is then removed, and the wheel comes to rest in 59.7 s. (a) Find the moment of inertia of the wheel. _______ kg
A torque of 35.0 N · m is applied to an initially motionless wheel which rotates...
A torque of 35.0 N · m is applied to an initially motionless wheel which rotates around a fixed axis. This torque is the result of a directed force combined with a friction force. As a result of the applied torque the angular speed of the wheel increases from 0 to 10.5 rad/s. After 6.10 s the directed force is removed, and the wheel comes to rest 60.2 s later. (a)What is the wheel's moment of inertia (in kg ·...
The combination of an applied force and a frictional force produces a constant torque of 40...
The combination of an applied force and a frictional force produces a constant torque of 40 N·m on a wheel rotating about a fixed axis. The applied force acts for 8.0 seconds, during which time the angular speed of the wheel increases from 0 to 700 degrees/second. The applied force is then removed, and the wheel comes to rest in 55 s. Answer the following questions. (a)What is the magnitude of the angular acceleration of the wheel while the applied...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The...
A wheel with radius 0.0600 m rotates about a horizontal frictionless axle at its center. The moment of inertia of the wheel about the axle is 2.50 kg⋅m2. The wheel is initially at rest. Then at t=0 a force F(t)=(5.50N/s)t is applied tangentially to the wheel and the wheel starts to rotate. What is the magnitude of the force at the instant when the wheel has turned through 8.00 revolutions?
A solid cylinder is free to rotate about an axis through its center. If the rotational...
A solid cylinder is free to rotate about an axis through its center. If the rotational inertia of the cylinder is .56 kg m^2, and the cylinder is initially at rest, how long must a net torque of 2.1 Nm act on the cylinder to bring it up to an angular speed of 44 rad/s?
The combination of an applied force and a friction force produces a constant total torque of...
The combination of an applied force and a friction force produces a constant total torque of 35.9 N · m on a wheel rotating about a fixed axis. The applied force acts for 6.20 s. During this time, the angular speed of the wheel increases from 0 to 9.6 rad/s. The applied force is then removed, and the wheel comes to rest in 60.5 s. (a) Find the moment of inertia of the wheel. kg · m2 (b) Find the...
A wheel stars at rest, has a radius of 0.1m and has a moment of inertia...
A wheel stars at rest, has a radius of 0.1m and has a moment of inertia I=10kg*m^2. A constant torque of 3 N*m is applied to the wheel to cause counter-clockwise angular acceleration 1) what will the angular velocity of the wheel be when the angular displacement is 20*pi radians? 2) what will the tangentail speed of a point on the outer edge of the wheel be when the angular velocirt of the wheel is your answer to part 2?...
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 2.8 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system...
A car's wheel has a rotational inertia of 3.1 kg m2. Working in a coordinate system where counterclockwise is positive, answer the following questions. Treat parts a, b, and c as stand-alone questions; the response from one is not needed for the following parts. a) If the wheel is spinning with an angular velocity of 6 rad/s counterclockwise and then a torque of 15 N m is applied over a time interval of 4 s, What is the wheel's final...