Question

The motion of a body is described by the equation 1.90 sin (0.380πt) where t is...

The motion of a body is described by the equation 1.90 sin (0.380πt) where t is in s and y is in m.

(a) Find the amplitude.

(b) Find the period.

(c) Find the frequency.

(d) Find the displacement at t = 2.50 s.

(e) Find the displacement at t = 29.0 s.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747...
A transverse wave on a string is described by y(x, t) = (0.140 mm) sin {(5.747 rad/m)[x − (69.8 m/s)t]}. Find the wavelength of this wave. in m Find the frequency of this wave. in Hz Find the amplitude of this wave in mm Find the speed of motion of the wave in m/s Find the direction of motion of the wave. Express your answer as "+x" or "-x".
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body....
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.1 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? 2) An oscillating block-spring system takes 0.746 s to begin repeating its motion. Find (a) the period, (b) the frequency in hertz, and (c) the angular frequency in radians per second.
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and...
A sinusoidal wave is described by y(x,t)= (0.45m )sin (0.30 x – 50t+π/6), where ‘x’ and ‘y’ are in meters and ‘t’ is in seconds.(a). Find the transverse velocity and transverse acceleration expression. (b).Determine the amplitude , angular frequency, angular wave number, wavelength, wave speed and direction of the motion.?
A wave is described by y = 0.019 8 sin(kx - ωt), where k = 2.06...
A wave is described by y = 0.019 8 sin(kx - ωt), where k = 2.06 rad/m, ω = 3.68 rad/s, x and y are in meters, and t is in seconds. (a) Determine the amplitude of the wave. m (b) Determine the wavelength of the wave. m (c) Determine the frequency of the wave. Hz (d) Determine the speed of the wave. m/s
A wave on a string is described by D(x,t)=(4.0cm)× sin[2π(x/(4.8m)+t/(0.26s)+1)], where x is in m and...
A wave on a string is described by D(x,t)=(4.0cm)× sin[2π(x/(4.8m)+t/(0.26s)+1)], where x is in m and t is in s. Part A What is the wave speed? Part B What is the frequency? Part C What is the wave number? Part D At t=0.65s, what is the displacement of the string at x=5.2m?
Motion of an oscillating mass [0.75 kg] attached to the spring is described by the equation...
Motion of an oscillating mass [0.75 kg] attached to the spring is described by the equation below: (??) = 7.4 (????) ?????? [(4.16 ?????? ?? ) ?? ? 2.42] Find: a. Amplitude b. Frequency c. Time Period d. Spring constant e. Velocity at the mean position f. Potential energy g. at the extreme position.
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt)...
he equation of motion of a simple harmonic oscillator is given by x(t) = (7.4 cm)cos(12πt) − (4.2 cm)sin(12πt), where t is in seconds.Find the amplitude. m (b) Determine the period. s (c) Determine the initial phase. °
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of...
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 6.9 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
The function x = (9.5 m) cos[(6πrad/s)t + π/4 rad] gives the simple harmonic motion of...
The function x = (9.5 m) cos[(6πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.3 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
The function x = (6.4 m) cos[(4πrad/s)t + π/3 rad] gives the simple harmonic motion of...
The function x = (6.4 m) cos[(4πrad/s)t + π/3 rad] gives the simple harmonic motion of a body. At t = 3.2 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT