Question

T93 There is a vibrating mass-spring system supported on a frictionless surface and a second equal...

T93 There is a vibrating mass-spring system supported on a frictionless surface and a second equal mass that is moving toward the vibrating mass with velocity v. the motion of the vibrating mass is given by x = Acosωt (where x is the displacement of the mass from its equilibrium position in m, A is the amplitude of 0.1 m, and ω is the angular frequency of 40 rad/s). The two masses collide elastically just as the vibrating mass passes through its equilibrium position traveling to the right. What should be the velocity v of the second mass so that the mass-spring system is at rest following the elastic collision? What is the velocity of the second mass after the elastic collision?

Homework Answers

Answer #1


Formula used : elastic collision in one dimension

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The...
A mass attached to a spring oscillates back and forth on a horizontal frictionless surface. The velocity of the mass is modeled by the function v = 2πfA cos(2πft) when at t = 0, x = 0. What is the magnitude of the velocity in cm/s at the equilibrium position for an amplitude of 4.5 cm and a frequency of 2.3 Hz?
A frictionless spring-mass system with spring constant 425 N/m and mass 1kg oscillates with amplitude 8.0...
A frictionless spring-mass system with spring constant 425 N/m and mass 1kg oscillates with amplitude 8.0 cm. What is its speed at position x = 3.5 cm? (Answer in cm/s.)
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of...
A spring of negligible mass stretches 3.00 cm from its relaxed length when a force of 7.10 N is applied. A 0.440-kg particle rests on a frictionless horizontal surface and is attached to the free end of the spring. The particle is displaced from the origin to x = 5.00 cm and released from rest at t = 0. (Assume that the direction of the initial displacement is positive. Use the exact values you enter to make later calculations.) (a)...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
A particle of mass 5.00 kg is attached to a spring with a force constant of...
A particle of mass 5.00 kg is attached to a spring with a force constant of 100 N/m. It is oscillating on a horizontal frictionless surface with an amplitude of 2.00 m. A 7.00 kg object is dropped vertically on top of the 5.00 kg object as it passes through its equilibrium point. The two objects stick together. (a) By how much does the amplitude of the vibrating system change as a result of collision? (b) By how much does...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 54.5 J and a maximum displacement from equilibrium of 0.285 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 41.4 J and a maximum displacement from equilibrium of 0.284 m. (a) What is the spring constant? N/m   (b) What is the kinetic energy of the system at the equilibrium point? J   (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg   (d) What is the speed of the block when its displacement is 0.160 m? m/s  ...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 53.9 J and a maximum displacement from equilibrium of 0.197 m. (a) What is the spring constant? N/m (b) What is the kinetic energy of the system at the equilibrium point? J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? kg (d) What is the speed of the block when its displacement is 0.160 m? m/s...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E...
A horizontal block-spring system with the block on a frictionless surface has total mechanical energy E = 39.0 J and a maximum displacement from equilibrium of 0.260 m. (a) What is the spring constant? ___N/m (b) What is the kinetic energy of the system at the equilibrium point? ___J (c) If the maximum speed of the block is 3.45 m/s, what is its mass? ___kg (d) What is the speed of the block when its displacement is 0.160 m? ___m/s...
A 0.69 kg mass at the end of a spring vibrates 4.0 times per second with...
A 0.69 kg mass at the end of a spring vibrates 4.0 times per second with an amplitude of 0.13 m . A) Determine the velocity when it passes the equilibrium point. B) Determine the velocity when it is .11 m from equilibrium. C) Determine the total energy of the system. D) Determine the equation describing the motion of the mass, assuming that x was a maximum at t=0.