Question

Two spherical shells have a common center. A -1.9 10-6 C charge is spread uniformly over...

Two spherical shells have a common center. A -1.9 10-6 C charge is spread uniformly over the inner shell, which has a radius of 0.050 m. A +5.5 10-6 C charge is spread uniformly over the outer shell, which has a radius of 0.15 m. Find the magnitude and direction of the electric field at the following distances (measured from the common center). (b) 0.10 m magnitude

Homework Answers

Answer #1

   Givne data


   inner sphere charge q1 = - 1.9*10^-6 C, radius r1 = 0.050 m

   outer sphere charge q2 = +5.5*10^-6 C, radius r2 = 0.15 m

   Electraic field at a point r form the reference point (centre of s sphere ) i s

       E = k *Q/r^2

   now the point 0.10 m is inside the outer sphere and out side the inner sphere

       The electric field E at 0.10 m is


       E = kq1/r1^2
          = 9*10^9*-1.6*10^-6 / 0.10^2
          = - 1440000 N/C

     - ve indicates field is directed towards the centre.

   because electric field lines are originated form + ve charge and towards the - ve charges

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a...
A charge is spread out uniformly over a small non-conducting sphere. The small sphere shares a center with a larger spherical shell with an inner radius of 6 ?? and an outer radius of 12 ??. a) Using Gauss’ Law, what is the magnitude of the charge on the nonconducting sphere if the field from the sphere is measured to be 8200 ?/? when 0.5 ?? from the center? b) What is the surface charge density on the inside of...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical...
Consider two concentric spherical shells with different radii, namely one is inside the other. The spherical shell inside has radius R1 = 7.00 cm and charge q1 = +3.00×10^-6 C; the spherical shell outside has radius R2 = 17.0 cm and charge q2 = −5.00×10^-6 C. For both shells charges are distributed uniformly over their surfaces. Assume that V = 0 at large distances from both shells. A) Find the electric potential of the two shells at the distance r...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical...
A thin spherical shell with radius R1 = 4.00cm is concentric with a larger thin spherical shell with radius 7.00cm . Both shells are made of insulating material. The smaller shell has charge q1=+6.00nC distributed uniformly over its surface, and the larger shell has charge q2=?9.00nC distributed uniformly over its surface. Take the electric potential to be zero at an infinite distance from both shells. Part A What is the electric potential due to the two shells at the following...
Three concentric conducting spherical shells have radii a, b, and c such that a < b...
Three concentric conducting spherical shells have radii a, b, and c such that a < b < c. Initially the inner shell is uncharged, the middle shell has a positive charge +Q, and the outer shell has a negative charge –Q. (a) Find the electric potential of the three shells. (b) If the inner and outer shells are now connected by a wire that is insulated as it passes through the middle shell, what is the electric potential of each...
An amount of charge Q is distributed uniformly inside a spherical shell of inner radius a...
An amount of charge Q is distributed uniformly inside a spherical shell of inner radius a and outer radius b. Use Gauss's Law to calculate the electric field at a distance r from the center of the shell. Consider the cases r<a, a<r<b, and r<b.
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a...
A point charge q = −4.0 ✕ 10−12 C is placed at the center of a spherical conducting shell of inner radius 3.4 cm and outer radius 3.9 cm. The electric field just above the surface of the conductor is directed radially outward and has magnitude 7.5 N/C. a) What is the charge density (in C/m2) on the inner surface of the shell? b) What is the charge density (in C/m2) on the outer surface of the shell? c) What...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and the outer shell will be denoted by S2. The inner radius of S1 is r1. The outer radius of S1 is r2. The inner radius of S2 is r3 and the outer radius of S2 is r4. S1 and S2 are concentric with S1 contained within S2. S1 has a total charge of Q1 and S2 has a total charge of Q2. Find: a)...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge...
Two long, charged, thin-walled, concentric cylindrical shells have radii of 1.22 and 11.47 cm. The charge per unit length is 3.55 × 10-6 C/m on the inner shell and 8.56 × 10-6 C/m on the outer shell. What is the magnitude electric field of E at a radial distance r = 6.39 cm??
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa...
(8c23p69) A thin, metallic, spherical shell of radius a = 7.0 cm has a charge qa = 5.00×10-6 C. Concentric with it is another thin, metallic, spherical shell of radius b = 18.90 cm and charge qb = 5.00×10-6 C. Find the electric field at radial points r where r = 0.0 cm. Find the electric field at radial points r where r = 13.0 cm. Find the electric field at radial points r where r = 28.4 cm. Discuss...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell...
A point charge + 5.0 ?C is at the center of an electrically neutral spherical shell with a radius of 12.0 cm. (i) What is the total electric flux about the sphere shell? (ii) What is the magnitude of the electric field at a distance 0.30 m from the center?