Question

Given normal vector w and real number b, let H be the hyperplane. Translate the normal...

Given normal vector w and real number b, let H be the hyperplane. Translate the normal vector w so that its tail is in H. Then w points to one side of H. Show that for every v, wv+b is positive if and only if the point in R corresponding to v is on the side of H that w points to.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Let w be a non-real complex number. Show that every complex number z can be written...
Let w be a non-real complex number. Show that every complex number z can be written in the form ? = ? + ?? (?, ? ∈ ?) Furthermore, prove that a and b are uniquely determined by w and z.
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉...
Let V be a finite dimensional vector space over R with an inner product 〈x, y〉 ∈ R for x, y ∈ V . (a) (3points) Let λ∈R with λ>0. Show that 〈x,y〉′ = λ〈x,y〉, for x,y ∈ V, (b) (2 points) Let T : V → V be a linear operator, such that 〈T(x),T(y)〉 = 〈x,y〉, for all x,y ∈ V. Show that T is one-to-one. (c) (2 points) Recall that the norm of a vector x ∈ V...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say...
Let V and W be vector spaces and let T:V→W be a linear transformation. We say a linear transformation S:W→V is a left inverse of T if ST=Iv, where ?v denotes the identity transformation on V. We say a linear transformation S:W→V is a right inverse of ? if ??=?w, where ?w denotes the identity transformation on W. Finally, we say a linear transformation S:W→V is an inverse of ? if it is both a left and right inverse of...
Problem 1 (cf. IMT 1.1.8). Let h and w be positive reals, and let A =...
Problem 1 (cf. IMT 1.1.8). Let h and w be positive reals, and let A = (0, h) and B = (w, 0) be the specified points in R 2 . Let T be the solid triangle determined by the origin, A, and B. For this problem, you cannot use 1. Show that, for each Epsilon> 0, we can find elementary sets E and F with the properties that E ⊆ T ⊆ F and m^2 (F \ E) <Epsilon...
Determine if the given set V is a subspace of the vector space W, where a)...
Determine if the given set V is a subspace of the vector space W, where a) V={polynomials of degree at most n with p(0)=0} and W= {polynomials of degree at most n} b) V={all diagonal n x n matrices with real entries} and W=all n x n matrices with real entries *Can you please show each step and little bit of an explanation on how you got the answer, struggling to learn this concept?*
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set,...
Let X be a real vector space. Suppose {⃗v1,⃗v2,⃗v3} ⊂ X is a linearly independent set, and suppose {w⃗1,w⃗2,w⃗3} ⊂ X is a linearly dependent set. Define V = span{⃗v1,⃗v2,⃗v3} and W = span{w⃗1,w⃗2,w⃗3}. (a) Is there a linear transformation P : V → W such that P(⃗vi) = w⃗i for i = 1, 2, 3? (b) Is there a linear transformation Q : W → V such that Q(w⃗i) = ⃗vi for i = 1, 2, 3? Hint: the...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be...
Let B = [ aij ] 20×17 be a matrix with real entries. Let x be in R 17 , c be in R 20, and 0 be the vector with all zero entries. Show that each of the following statements implies the other. (a) Bx = 0 has only the trivial solution x = 0 n R 17, then (b) If Bx = c has a solution for some vector c in R 20, then the solution is unique.
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x...
Problem 3.2 Let H ∈ Rn×n be symmetric and idempotent, hence a projection matrix. Let x ∼ N(0,In). (a) Let σ > 0 be a positive number. Find the distribution of σx. (b) Let u = Hx and v = (I −H)x and find the joint distribution of (u,v). 1 (c) Someone claims that u and v are independent. Is that true? (d) Let µ ∈ Im(H). Show that Hµ = µ. (e) Assume that 1 ∈ Im(H) and find...
Theorem: Given a,b belongs to real number R, with a<b, the intervals (0,1) and (a,b) have...
Theorem: Given a,b belongs to real number R, with a<b, the intervals (0,1) and (a,b) have the same cardinality. Proof: Consider h:(0,1)-----> (a,b), given by h(x)= (b-a) (x)+a. Finish the proof.
(a) Consider binary codes determined by a parity-check matrix H. Let r be a vector of...
(a) Consider binary codes determined by a parity-check matrix H. Let r be a vector of received symbols. The syndrome of r happens to be a sum of some columns of H. What columns are these? Hint: They are determined by the errors occurring in transmissions. (b) Let G be a k × n generating matrix of a code C the form G = [I_k | B] , where Ik is the k × k identity matrix, and B is...