Question

A series RLC circuit has R=425 ohms, L=1.25H, C=3.50uF. It is connected to an ac source...

A series RLC circuit has R=425 ohms, L=1.25H, C=3.50uF. It is connected to an ac source with f=60.0Hz and V =150v. Show that the sum of the individual voltage drops on the circuit elements is 150V.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C...
Consider a series RLC circuit with R = 24 Ω, L = 6.0 mH, and C = 32 μF. The circuit is connected to a 10-V (rms), 600-Hz AC source. (a) Is the sum of the voltage drops across R, L, and C equal to 10 V (rms)? (b) Which is greatest, the power delivered to the resistor, to the capacitor, or to the inductor? (c) Find the average power delivered to the circuit.  W
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8...
A series RLC circuit has R = 400 ?, L = 1.35 H, C = 3.8 ?F. It is connected to an AC source with f = 60.0 Hz and ?Vmax = 150 V. Suppose the frequency is now increased to f = 93 Hz, and we want to keep the impedance unchanged. (a) What new resistance should we use to achieve this goal? R = ____ ? (b) What is the phase angle (in degrees) between the current and...
a series rlc circuit has r= 400 ohms, L= 1.25H & C= 12.5 uF. The Voltage...
a series rlc circuit has r= 400 ohms, L= 1.25H & C= 12.5 uF. The Voltage is 12v sin(400t) . using reactants x, determine the impendance Z. Current magnitude i and the phase angle for this circuit
An LRC series circuit is constructed. L=180mH, C=60microfarad, R=50ohm. An AC source with a maximum voltage...
An LRC series circuit is constructed. L=180mH, C=60microfarad, R=50ohm. An AC source with a maximum voltage of 150V and f=50Hz is connected to the series. Calculate the voltage drop across the capacitor, the resisotr and the inductor.
A RLC SERIES circuit has C=2 F, L=6 H and R=8 Ohms, considering that at instant...
A RLC SERIES circuit has C=2 F, L=6 H and R=8 Ohms, considering that at instant t=0 the power supply (4 V) is activated, determine the value of the TENSION ON THE INDUCTOR at the instant that power supply is activated.
consider a series RLC circuit with a resistor E = 43.0 ohm, an inductor L =...
consider a series RLC circuit with a resistor E = 43.0 ohm, an inductor L = 15.5 mH, a capacitor C = 0.0545 micro farads and an AC source that provides an RMS voltage of 0.301 V at 16.2 kHz what is the impedance of the circuit in ohms
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage...
Consider an RLC circuit in series. In the circuit the AC source has an rms voltage of 10 V and frequency of 25 kHz. The inductor is 0.50 mH, the capacitor is 0.10 μF, and resistor is 5.0 Ω. a) Determine the impedance b) Determine the voltage across the inductor, capacitor and resistor. c) Determine the phase angle. d) Is the voltage leading or lagging the current?
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant...
An L-R-C series circuit driven by an AC source has the phasors shown. At the instant shown in the phasor diagram,  ω t = π 3. If the voltage amplitude across the resistor is VR = 16.00 V, and the voltage amplitude across the inductor is also VL = 16.00 V, then what is the instantaneous voltage across the inductor at the instant shown in the phasor diagram?
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency...
In RLC series circuit, an AC source with a rms voltage of 220 V and frequency 60 Hz is connected to a resistor, a capacitor 65 µF and an inductor of inductance 185 mH. If the observed current is 4.4 A, evaluate the resistance of the resistor.
The output of an ac generator connected to an RLC series combination has a frequency of...
The output of an ac generator connected to an RLC series combination has a frequency of 12 kHz and an amplitude of 28 V. If R = 4.0 Ohms, L = 30 μH, and C = 800 nF, find a. The impedance b. The amplitude for current c. The phase difference between the current and the emf of the generator show all steps