Question

The resolving power of a microscope is proportional to the wavelength used. A resolution of 1.0  10-11...

The resolving power of a microscope is proportional to the wavelength used. A resolution of 1.0  10-11 m (0.010 nm) would be required in order to "see" an atom.

(a) If electrons were used (electron microscope), what minimum kinetic energy would be required for the electrons?

keV (classically)
keV (relativistically)


(b) If photons were used, what minimum photon energy would be needed to obtain 1.0  10-11 m resolution?
keV

Homework Answers

Answer #1

Please ask your doubts or queries in the comment section below.

Please kindly upvote if you are satisfied with the solution.

Thank you.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
7. Resolving ‘power’ of an electron microscope versus optical (photon) microscope: If a resolution of 1.0...
7. Resolving ‘power’ of an electron microscope versus optical (photon) microscope: If a resolution of 1.0 x 10-11m (0.010nm) is required to ‘see’ an atom (a) If electrons are used (emicroscope), what minimum kinetic energy of the electrons is required? Use deBroglie’s Hypothesis and KE = p2 /2me and non-relativistic velocities: (b) If photons are used, what minimum KE (Eγ) is required to obtain 10-11m resolution?
An electron beam in which electrons have a wavelength of 2.4pm is used in an electron...
An electron beam in which electrons have a wavelength of 2.4pm is used in an electron microscope with an aperture diameter of 2mm. (a) What is the angular resolution of this microscope, i.e. what is the minimum angle, in radians, that can be resolved? (b) Compare your answer in part (a) to the resolution achieved with visible light with wavelength of 550nm. (c) Compute the wavelength of photons with the same kinetic energy as the electrons and comment on why...
a) In an electron microscope, a potential difference of 20 kV is applied to accelerate the...
a) In an electron microscope, a potential difference of 20 kV is applied to accelerate the electrons. Determine the wavelength (in m) of the X-ray photons of equal energy as said electrons. If the wavelength of the X-rays is between 10 and 0.01 nm, what can you deduce about its calculation? b) An electron and a neutron have the same wavelength of de Broglie.
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine...
23.   Photons and Energy      A. A certain source emits radiation of wavelength 500.0 nm. Determine its frequency. Calculate the energy associated with this photon at 500.0 nm.    B. If it takes 3.36 x 10-19 J of energy to eject an electron from the surface of a certain metal, Calculate the frequency of this energy and the longest possible wavelength in nm.       C. Ionization energy is the energy required to remove an electron from an atom in...
X rays of wavelength 0.0144 nm are directed in the positive direction of an x axis...
X rays of wavelength 0.0144 nm are directed in the positive direction of an x axis onto a target containing loosely bound electrons. For Compton scattering from one of those electrons, at an angle of 167°, what are (a) the Compton shift (in pm), (b) the corresponding change in photon energy (in keV), (c) the kinetic energy (in keV) of the recoiling electron, and (d) the angle between the positive direction of the x axis and the electron's direction of...
X rays of wavelength 0.0148 nm are directed in the positive direction of an x axis...
X rays of wavelength 0.0148 nm are directed in the positive direction of an x axis onto a target containing loosely bound electrons. For Compton scattering from one of those electrons, at an angle of 159°, what are (a) the Compton shift (in pm), (b) the corresponding change in photon energy (in keV), (c) the kinetic energy (in keV) of the recoiling electron, and (d) the angle between the positive direction of the x axis and the electron's direction of...
(1)(A)A laser used in eye surgery has a power of 1.38 W and the wavelength of...
(1)(A)A laser used in eye surgery has a power of 1.38 W and the wavelength of the light is 517 nm. If during a surgical process, the laser is focused on the retina of an eye for 0.031 s, determine the number of photons incident on the retina. (B)Through what minimum potential difference (in kV) must electrons at rest be accelerated so that on striking a target they produce x-ray photons with a momentum of 1.11 keV/c? Through what minimum...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The...
Find the wavelength (in nm) of a photon whose energy is 6.70 × 10-19 J. The maximum wavelength that an electromagnetic wave can have and still eject electrons from a metal surface is 507 nm. What is the work function W0 of this metal? Express your answer in electron volts. In the Compton effect, an X-ray photon of wavelength 0.16 nm is incident on a stationary electron. Upon collision with the electron, the scattered X-ray photon continues to travel in...
A. What is the energy in 10-3 eV of a photon that has a momentum of...
A. What is the energy in 10-3 eV of a photon that has a momentum of 6.13×10−29 kg ⋅ m/s ? B. What is the energy in 10-9 eV of a photon in a radio wave from an AM station that has a 1,506 kHz broadcast frequency? C. Calculate the frequency in 1020 Hz of a 0.571 MeV γ-ray photon. D. A certain molecule oscillates with a frequency of 1.73×1013 Hz. What is the approximate value of n for a...
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared...
1. Microwave radiation has wavelengths from 1.0×10-3 to 1.0 m, whereas the wavelength region for infrared radiation is 1.0×10-6 to 1.0×10-3 m. We can say that: (higher than, lower than, or the same) 1. The frequency of microwave radiation is infrared radiation. 2. The speed of microwave radiation is infrared radiation. 2.Infrared radiation has frequencies from 3.0×1011 to 3.0×1014 Hz, whereas the frequency region for microwave radiation is 3.0×108 to 3.0×1011 Hz. (higher than, lower than, or the same) We...