Question

7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck...

7. A 77.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the sign of your answer.)

puck = -33.86 m/s

goalie = ____ m/s

9. During an ice show a 70.0 kg skater leaps into the air and is caught by an initially stationary 90.0 kg skater.

(a)What is their final velocity in meters per second assuming negligible friction and that the 70.0-kg skater's original horizontal velocity was 4.00 m/s?

1.75 m/s

(b)How much kinetic energy is lost in joules?

___ J

17. The upper leg muscle (quadriceps) exerts a force of

FQ = 1120 N,

which is carried by a tendon over the kneecap (the patella) at the angles shown in the figure below.

Find the magnitude in newtons and direction in degrees counter-clockwise from an axis directed to the left of the force exerted by the kneecap on the upper leg bone (the femur).

Magnitude = ____ N

direction = 10 ° counter-clockwise from an axis directed to the left

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped...
A 67.0 kg ice hockey goalie, originally at rest, catches a 0.150 kg hockey puck slapped at him at a velocity of 34.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would their final velocities (in m/s) be in this case? (Assume the original direction of the ice puck toward the goalie is in the positive direction. Indicate the direction with the...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped...
Contents » A 81.0-kg ice hockey goalie, originally at rest, catches a 0.150-kg hockey puck slapped at him at a velocity of 28.0 m/s. Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What is the final velocity of the goalie?
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him...
A 70.0-kg ice hockey goalie, originally at rest, has a 0.170-kg hockey puck slapped at him at a velocity of 35.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic.
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at...
A young 43-kg ice hockie goalie, originally at rest, catches a 0.145-kg hockey puck slapped at him at a speed of 34.5 m/s. In this problem, take the original direction of the puck as positive. Part A) Suppose the goalie and the ice puck have an elastic collision and the puck is reflected back in the direction from which it came. What would the final velocity of the puck, in meters per second, be in this case? Vf,2 = Part...
A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg0.170 kg hockey...
A 70.0 kg70.0 kg ice hockey goalie, originally at rest, has a 0.170 kg0.170 kg hockey puck slapped at him at a velocity of 41.5 m/s.41.5 m/s. Suppose the goalie and the puck have an elastic collision, and the puck is reflected back in the direction from which it came. What would the final velocities of the goalie and the puck be in this case? Assume that the collision is completely elastic
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at...
A 70-kg hockey player, originally at rest, hits a 0.15-kg hockey puck slapped at him at a velocity of 35 m/s. Following the hit the ice puck reflected back at 34.85 m/s in the direction from which it came. Ignore friction. Determine the final velocity of the hockey player. Select one: a. -5.25 m/s b. 5.25 m/s c. 0 m/s d. 0.1497 m/s
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 7.10 m/s along the +x-axis and scatters to an angle of 36.0° above the +x-axis, what is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = Velocity (direction) = below +x-axis What is the...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If...
Two identical pucks collide on an air hockey table. One puck was originally at rest. If the incoming puck has a velocity of 6.50 m/s along the +x-axis and scatters to an angle of 32.0° above the +x-axis. A) What is the velocity (magnitude and direction) of the second puck? (You may use the result that θ1 − θ2 = 90° for elastic collisions of objects that have identical masses.) Velocity (magnitude) = _______ Velocity (direction) = ________ below +x-axis...
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the...
This 80 kg ice skater moving at 2.5 m/s throws a 200 g puck in the direction he is moving at 15 m/s relative to the ice. a. Find the velocity of the ice skater after throwing the puck. (Ignore friction) b. A second skater who is 60 kg initially at rest catches the puck. Find the velocity of the second skater after catching the puck.
During an ice show a 55.0 kg skater leaps into the air and is caught by...
During an ice show a 55.0 kg skater leaps into the air and is caught by an initially stationary 90.0 kg skater. (a) What is their final velocity in meters per second assuming negligible friction and that the 55.0-kg skater's original horizontal velocity was 4.00 m/s? ________ m/s (b) How much kinetic energy is lost in joules? _______J
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT
Active Questions
  • Ross Hopkins, president of Hopkins Hospitality, has developed the tasks, durations, and predecessor relationships in the...
    asked 10 minutes ago
  • A trapezoidal channel is needed for a location where the bed slope is 0.008 ft/ft, discharge...
    asked 13 minutes ago
  • List and briefly explain each step in the ABCDE technique for examining irrational beliefs that contribute...
    asked 32 minutes ago
  • 1. Find the general solution of the first order linear differential equation: 2*x*dy/dx -y-3/sqrt(x)=0. sqrt() =...
    asked 54 minutes ago
  • Fairfield Homes is developing two parcels near Pigeon Fork, Tennessee. In order to test different advertising...
    asked 59 minutes ago
  • . For each of the following questions, say whether the random process is reasonably a binomial...
    asked 1 hour ago
  • Please discuss why empathy is so important in light of current events. Please give specific examples
    asked 1 hour ago
  • Describe ONE thing you learned from either Peter singer or Tibor Machan author that compelled you...
    asked 1 hour ago
  • Global logistics firms such as DHL Supply Chain and Global Forwarding or C. H. Robinson Worldwide...
    asked 1 hour ago
  • Please match each factor in adoption of a new product or service to the best match...
    asked 1 hour ago
  • Fatty Acid Synthesis Assignment Explain how the activation of acetyl-CoA carboxylase prevents excess citrate in the...
    asked 2 hours ago
  • 1. Discuss and give an example of how a person might “constructively” enter a building of...
    asked 2 hours ago