Question

A hydrogen atom makes a transition from a n=3 state to a n= 2 state (the...

A hydrogen atom makes a transition from a n=3 state to a n= 2 state (the Balmer Hα line) while in a magnetic field in the + z - direction and with magnitude 1.50 T . If the magnetic quantum number is ml=2 in the initial (n= 3) state and ml=1 in the final (n= 2) state, by how much is the initial energy level shifted from the zero-field value? By how much is the final energy level shifted from the zero-field value? By how much is the wavelength of the Hα line shifted from the zero-field value

Homework Answers

Answer #1

I hope you understood the problem and got your answers, If yes rate me!! or else comment for a better solutions

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a...
A hydrogen atom (Z=1) is in the third excited state. It makes a transition to a different state, and a photon is either emitted or absorbed. Answer the following conceptual questions: What is the quantum number of the third excited state? When an atom emits a photon, is the final quantum number of the atom greater than or less than the initial quantum number? When an atom absorbs a photon, is the final quantum number of the atom greater than...
An electron in a hydrogen atom makes a transition from the n = 7 to the...
An electron in a hydrogen atom makes a transition from the n = 7 to the n = 2 energy state. Determine the wavelength of the emitted photon (in nm). Enter an integer.
An electron in a hydrogen atom makes a transition from the n = 68 to the...
An electron in a hydrogen atom makes a transition from the n = 68 to the n = 4 energy state. Determine the wavelength of the emitted photon (in nm).
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom,...
Consider the electronic transition from n = 4 to n = 1 in a hydrogen atom, and select the correct statement below: A photon of 97 nm wavelength and 2.05x10-18 J energy was emitted from the hydrogen atom in this electronic transition. A photon of 97 nm wavelength and 2.05x10-18 J energy was absorbed by the hydrogen atom in this electronic transition. A photon of 122 nm wavelength and 1.64x10-18 J energy was emitted from the hydrogen atom in this...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state...
(1) Part A: If a electron in a hydrogen atom makes a transition from ground state to n = 8 level what wavelength of light in (nm) would be needed for the abosorbed photon to cause the transition? Part B: If the same electron falls to a lower level by emmitting a photon of light in the Paschen series what is the frequncy of light in (Hz) thats emitted? (2) When a photon have a wavelength of 195nm strikes the...
A hydrogen atom transitions from the n = 6 excited state to the n = 3...
A hydrogen atom transitions from the n = 6 excited state to the n = 3 excited state, emitting a photon. a) What is the energy, in electron volts, of the electron in the n = 6 state? How far from the nucleus is the electron? b) What is the energy, in electron volts, of the photon emitted by the hydrogen atom? What is the wavelength of this photon? c) How many different possible photons could the n = 6...
A hydrogen atom, initially in the 3s state, is placed in a 0.800-T magnetic field that...
A hydrogen atom, initially in the 3s state, is placed in a 0.800-T magnetic field that points in the +z-direction. If the atom emits a photon, what are the possible photon energies? What are the initial and final m_l values for the transition that produces a photon with the shortest wavelength?
An electron in the d energy state level of a hydrogen atom is placed in an...
An electron in the d energy state level of a hydrogen atom is placed in an external magnetic field. It is observed that a photon of energy 1968 μeV is emitted when the electron transition from the maximum to the minimum energy state. a) Sketch the energy level diagram before and after the presence of the magnetic field. b) What is the intensity of the external magnetic field?
An electron in a hydrogen atom undergoes a transition from the n = 6 level to...
An electron in a hydrogen atom undergoes a transition from the n = 6 level to some lower energy level. In doing so, energy is released in the form of light. a) Calculate the frequency in s-1 (to 3 significant figures) of a photon of light associated with the highest frequency transition (i.e. largest difference in frequency) possible from the n = 6 to a lower level. (HINT: Try drawing a picture first…) b) Calculate the wavelength (in nm) of...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to...
A hydrogen atom is in the ground state. It absorbs energy and makes a transition to the n = 6 excited state. The atom returns to the ground state by emitting two photons, one in dropping to n = 5 state, and one in further dropping to the ground state. What are the photon wavelengths of (a) the first and (b) the second transitions?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT