A 200g mass oscillates with a displacement given by x(t)=(7.0 cm) cos[(5/s)t+2pi/9] Find the
A. Angular frequency
B. Frequency
C.Period
D.Spring constant
E. Maximum speed
F. maximum acceleration
g. acceleratiom when the speed is equal to the maximum speed
h. phase when t=2s
I. displacment when t=2s
J. velocity when t=2s
k. acceleration when t=2s
Given
x(t)=(7.0 cm) cos[(5/s)t+2pi/9]
The equation is similiar to
x(t)=(A cm) cos[(W)t+Φ ]
a)
ANgular frequency = 5/s
b)
Frequency ,f = W/2pi = 5/s * 1/2pi = 5/2*pi*s
c)
Period, T = 1/f = 2*pi*s/5
d)
we have , W = sqrt (K/m)
K = m*W^2
K , Spring Constant = 0.2 * (5/s)^2 = 5/s^2
e)
Maximum speed = v = A*W = (0.07 *5/s) m/second
f)
Maximum acceleration ,a = A*W^2 = 0.07*(5/s)^2 m/second^2
h)
phase = 2*pi/9
i)
displacement,x = 0.07* cos (10/s + 2*pi/9)
j)
velocity = dx/dt = - 0.07*5/s * sin (10/s +2*pi/9)
k)
acceleration = dv/dt = -0.07*25/s^2 cos (10/s +2*pi/9)
Get Answers For Free
Most questions answered within 1 hours.