Question

A 200g mass oscillates with a displacement given by x(t)=(7.0 cm) cos[(5/s)t+2pi/9] Find the A. Angular...

A 200g mass oscillates with a displacement given by x(t)=(7.0 cm) cos[(5/s)t+2pi/9] Find the

A. Angular frequency

B. Frequency

C.Period

D.Spring constant

E. Maximum speed

F. maximum acceleration

g. acceleratiom when the speed is equal to the maximum speed

h. phase when t=2s

I. displacment when t=2s

J. velocity when t=2s

k. acceleration when t=2s

Homework Answers

Answer #1

Given

x(t)=(7.0 cm) cos[(5/s)t+2pi/9]

The equation is similiar to

x(t)=(A cm) cos[(W)t+Φ ]

a)

ANgular frequency = 5/s

b)

Frequency ,f = W/2pi = 5/s * 1/2pi = 5/2*pi*s

c)

Period, T = 1/f = 2*pi*s/5

d)

we have , W = sqrt (K/m)

K = m*W^2

K , Spring Constant = 0.2 * (5/s)^2 = 5/s^2

e)

Maximum speed = v = A*W = (0.07 *5/s) m/second

f)

Maximum acceleration ,a = A*W^2 = 0.07*(5/s)^2 m/second^2

h)

phase = 2*pi/9

i)

displacement,x = 0.07* cos (10/s + 2*pi/9)

j)

velocity = dx/dt = - 0.07*5/s * sin (10/s +2*pi/9)

k)

acceleration = dv/dt = -0.07*25/s^2 cos (10/s +2*pi/9)

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz...
A 205 g mass attached to a horizontal spring oscillates at a frequency of 1.00 Hz . At t =0s, the mass is at x= 4.20 cm and has vx =− 23.0 cm/s . Determine: (a) the period s (b) the angular frequency rad/s (c) the amplitude cm (d) the phase constant rad (e) the maximum speed cm/s (f) the maximum acceleration cm/s2 (g) the total energy J (h) the position at t = 4.2s
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz...
A 195 g mass attached to a horizontal spring oscillates at a frequency of 2.50 Hz . At t =0s, the mass is at x= 6.00 cm and has vx =? 40.0 cm/s . Determine:? the phase constant, the maximum speed, the maximum acceleration and the total energy
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates...
Consider a mass-spring system. The spring has constant k=30N/m and the mass m=3kg. The mass oscillates with amplitude of 10cm. What is the frequency of oscillation? What is the displacement at time t=0? When is the first time for the mass to be at maximum displacement? (t=?) What is the maximum acceleration felt by the mass? Where in the motion does this occur? What is the minimum acceleration felt by the mass? Where in the motion does this occur? What...
1) The position of a particle is given in cm by x = (4) cos 3πt,...
1) The position of a particle is given in cm by x = (4) cos 3πt, where t is in seconds. (a) Find the maximum speed.    m/s (b) Find the maximum acceleration of the particle. m/s2 2) An object of mass m is suspended from a vertical spring of force constant 1692 N/m. When the object is pulled down 2.51 cm from equilibrium and released from rest, the object oscillates at 5.10 Hz. Write expressions for the acceleration ax...
A 175 g mass hanging from a spring (k = 25.0 N/m) oscillates with an amplitude...
A 175 g mass hanging from a spring (k = 25.0 N/m) oscillates with an amplitude of 15.8 cm. a) Calculate the acceleration of the mass when its displacement is 8.00 cm below equilibrium b) Determine the maximum speed of the object.
A 3.5kg mass is attached to an ideal spring (k = 100.0N/m) and oscillates on a...
A 3.5kg mass is attached to an ideal spring (k = 100.0N/m) and oscillates on a horizontal frictionless track. At t = 0.00s, the mass is released from rest at x = 15.0cm. a.) Determine the frequency (f) of the oscillations. b.) Determine the maximum speed of the mass. At what point in the motion does the maximum speed occur? c.) What is the maximum acceleration of this mass? At what point in the motion does the maximum acceleration occur?...
Consider a small mass performing simple harmonic motion with angular frequency 10rad/s. If we know that...
Consider a small mass performing simple harmonic motion with angular frequency 10rad/s. If we know that at t = 0 the mass is at x0 = +5cm moving to the right at +87cm/s, and we want to represent the oscillations using a cos function then ... (a) Find the amplitude of the oscillations (b) Find the phase constant of the oscillations (c) Find the maximum speed of the mass (d) Find the maximum acceleration of the mass
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of...
The function x = (8.0 m) cos[(4πrad/s)t + π/5 rad] gives the simple harmonic motion of a body. At t = 6.9 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion?
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body....
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.1 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? 2) An oscillating block-spring system takes 0.746 s to begin repeating its motion. Find (a) the period, (b) the frequency in hertz, and (c) the angular frequency in radians per second.
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m....
Consider a 0.85 kg mass oscillating on a massless spring with spring constant of 45 N/m. This object reaches a maximum position of 12 cm from equilibrium. a) Determine the angular frequency of this mass. Then, determine the b) force, c) acceleration, d) elastic potential energy, e) kinetic energy, and f) velocity that it experiences at its maximum position. Determine the g) force, h) acceleration, i) elastic potential energy, j) kinetic energy, and k) velocity that it experiences at the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT