Question

A bucket with mass m = 1.0 kg is suspended over a well by a winch...

A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass 4.0 kg and radius R = 0.10 m about which the rope is wrapped. A handle is attached to one end in order to rotate the cylinder. For the purposes of this example, we are going to ignore any frictional forces in the winch. Now suppose that the winch handle breaks off, allowing the bucket to fall to the water as the rope unwinds from the cylinder. Assume that the bucket is released at t=0 and the water level is at a depth h = 2.2 m below the bucket at t=0. How far above the water is it at 0.50 s?

1.8 m (with sig figs) is the correct answer but I would like to know how to get this answer

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A bucket with mass m = 1.0 kg is suspended over a well by a winch...
A bucket with mass m = 1.0 kg is suspended over a well by a winch and rope. The winch consists of a solid cylinder with mass M = 7.0 kg and radius R = 0.10 m about which the rope is wrapped. The winch has a finite frictional force inside. A handle is attached to one end in order to rotate the cylinder. Now suppose that the winch handle breaks off, allowing the bucket to fall to the water...
A bucket hands over a well by a rope. The rope is wrapped around a winch...
A bucket hands over a well by a rope. The rope is wrapped around a winch (a wheel) which can be treated as a disk with a mass of 5.72 kg and a radius of 0.225m. The bucket itself weights 2.15kg and starts 11.6m from the surface of the water. The rope does not slip on the winch, and we can neglect any friction and air resistance. b. Use Newton's second law to find the linear acceleration of the bucket...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a...
A bucket of water of mass 15.9 kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.350 m with mass 12.4 kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2 m to the water. You can ignore the weight of the rope. Part A What is the tension in the rope while...
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass,...
A bucket of water of mass 15.6kg is suspended by a rope wrapped around a windlass, that is a solid cylinder with diameter 0.270m with mass 11.2kg . The cylinder pivots on a frictionless axle through its center. The bucket is released from rest at the top of a well and falls a distance 10.2m to the water. You can ignore the weight of the rope. A) What is the tension in the rope while the bucket is falling? B)...
A 1200 kg car is being raised over water by a winch. At the moment the...
A 1200 kg car is being raised over water by a winch. At the moment the car is 5.0 m above the water when the gearbox breaks. During the car's fall, there is no slipping between the massless rope, the pulley wheel, and the winch drum. The radius of the pulley is 30 cm and its mass is 15 kg. The radius of the drum is 80 cm and its mass is 500 kg. Approximating the pulley as a hoop...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to rotate about an axis through its center, with an angular acceleration of 0.2 rad/s^2. (a) Assuming a piece of string is wrapped around the cylinder, in such a way that the turning cylinder pulls the string onto itself, what is the total length of string wrapped on the cylinder at t= 10s? (b) What is the linear acceleration of a knot in the string...
A cylindrical block of mass M=50kg , area of base=0.1 m2 and height h=0.2m is hanging...
A cylindrical block of mass M=50kg , area of base=0.1 m2 and height h=0.2m is hanging on a rope and is in equilibrium. Any difference in atmospheric pressure along the height of the block is negligible. a) What is the tension of the rope? b) The cylindrical block is fully immersed in water with density Dw=1000 kg/m3 ,remaining suspended by the rope and in equilibrium. The top of the cylinder is in the surface level. What is the difference of...
1. A mass of 2.8 kg is suspended from the ceiling of an elevator by a...
1. A mass of 2.8 kg is suspended from the ceiling of an elevator by a rope. What is the tension in the rope when the elevator moves in the following ways? (a) accelerates upward at 1.2 m/s2 0 N 24.1 N 27.4 N 30.8 N (b) accelerates downward at 1.2 m/s2 0 N 24.1 N  27.4 N 30.8 N 2. A toboggan with two riders has a total mass of 88.0 kg. A third person is pushing the toboggan with...
A cylindrical block of mass M=50kg and height h=0.2m is hanging on a rope and is...
A cylindrical block of mass M=50kg and height h=0.2m is hanging on a rope and is in equilibrium. Any difference in atmospheric pressure along the height of the block is negligible. What is the tension of the rope in N? For gravity use approximate round value g = 10 m/s² 1) 500 The cylindrical block of mass M=50kg and height h=0.2m is hanging on a rope and is in equilibrium. The cylindrical block is fully immersed in water with density...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT