Question

You are observing the motion of a particle of charge 2.8 nC, travelling in a uniform...

You are observing the motion of a particle of charge 2.8 nC, travelling in a uniform magnetic field of unknown magnitude and direction. By analysing the motion of the charge, you determine that

  • When the particle is travelling at a speed of 6.8 m/s in the +, direction, it experiences a force of 5.44 mN in the +0 direction;

  • When later it is observed to be moving in the +z direction at 3.2 m/s, the force it experiences is still in the +y direction but is smaller in magnitude by 1. 6 mN.

    Determine the magnitude and direction (plane and angle in that plane) of the magnetic field in which the particle is moving.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A charged particle is in continuous circular motion in a plane perpendicular to a magnetic field....
A charged particle is in continuous circular motion in a plane perpendicular to a magnetic field. Draw a sketch with the magnetic field pointing into the page, and the particle travelling counter-clockwise in the plane of the page. Given a radius of motion of 0.0231 m, a magnetic field strength of 0.00500 T, a mass of 8.84 x 10-26 kg on the particle, and a linear speed of 209 m/s, determine the magnitude and sign of the particle’s charge.
An alpha particle travels at a velocity of magnitude 820 m/s through a uniform magnetic field...
An alpha particle travels at a velocity of magnitude 820 m/s through a uniform magnetic field of magnitude 0.038 T. (An alpha particle has a charge of charge of +3.2 × 10-19 C and a mass 6.6 × 10-27 kg) The angle between the particle's direction of motion and the magnetic field is 69°. What is the magnitude of (a) the force acting on the particle due to the field, (b) the acceleration of the particle due to this force?...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is...
A particle with charge q = 6.0 nC   and mass m = 3.0×10−11 kg which is initially at rest accelerates through a potential difference V = 100 V and enters into a region 0 < x < d, where there is a uniform magnetic field of magnitude B = 1.5 T with direction perpendicular to the plane of the paper and inward. Use the coordinate system shown in the figure to answer the following questions. (Gravitational force on the particle...
A particle with charge − 5.10 nC is moving in a uniform magnetic field B⃗ =−(...
A particle with charge − 5.10 nC is moving in a uniform magnetic field B⃗ =−( 1.25 T )k^. The magnetic force on the particle is measured to be F⃗ =−( 4.00×10−7 N )i^+( 7.60×10−7 N )j^ . Part A Are there components of the velocity that are not determined by the measurement of the force? yes no Part D Calculate the scalar product v⃗ ⋅F⃗. v⃗ ⋅F⃗ m/s⋅N Request Answer Part E What is the angle between v⃗ and...
– A particle with charge -5.60 nC is moving in a uniform magnetic field ??? =...
– A particle with charge -5.60 nC is moving in a uniform magnetic field ??? = ?(1.25 ??)???. The magnetic force on the particle is measured to be ?? = ?(3.40 × 10?7 N)??? + (7.40 × 10?7 N)???. (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there components of the velocity that are not determined by the measurement of the force? Explain your answer. (c) Calculate the scalar...
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s...
A particle that has an 8.9-µC charge moves with a velocity of magnitude 3.0 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.43 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field.
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105...
A particle that has an 8.1-μC charge moves with a velocity of magnitude 3 × 105 m/s along the +x axis. It experiences no magnetic force, although there is a magnetic field present. The maximum possible magnetic force that the charge with the given speed could experience has a magnitude of 0.470 N. Find the magnitude and direction of the magnetic field. Note that there are two possible answers for the direction of the field. I seem to be getting...
A particle with charge -5.60 nC is moving in a uniform magnetic field B=-(1.25 T)z (z-direction)....
A particle with charge -5.60 nC is moving in a uniform magnetic field B=-(1.25 T)z (z-direction). The magnetic force on the particle is measured to be ?? = ?(3.40 × 10?7 N)??? + (7.40 × 10?7 N)???. (a) Calculate all the components of the velocity of the particle that you can from this information. (b) Are there components of the velocity that are not determined by the measurement of the force? Explain your answer. (c) Calculate the scalar product of...
A particle with a charge of − 5.20 nC is moving in a uniform magnetic field...
A particle with a charge of − 5.20 nC is moving in a uniform magnetic field of B⃗ =−( 1.21 T )k^. The magnetic force on the particle is measured to be F⃗ =−( 3.70×10−7 N )i^+( 7.60×10−7 N )j^. Calculate the scalar product v⃗ ⋅F⃗ . Work the problem out symbolically first, then plug in numbers after you've simplified the symbolic expression.
A particle with charge ? 5.50 nC is moving in a uniform magnetic field B? =?(...
A particle with charge ? 5.50 nC is moving in a uniform magnetic field B? =?( 1.24 T )k^. The magnetic force on the particle is measured to be F? =?( 3.40×10?7 N )i^+( 7.60×10?7 N )j^. (A) Are there components of the velocity that are not determined by the measurement of the force? (D)Calculate the scalar product v? ?F? ? (E) What is the angle between v?  and F? ? Give your answer in degrees?