Question

Question 1 Part a) Two objects are connected by a light string passing over a light,...

Question 1

Part a) Two objects are connected by a light string passing over a light, frictionless pulley as shown in the figure below. The object of mass m1 = 6.40 kg is released from rest at a height h = 3.20 m above the table. Find the maximum height above the table to which the 3.00–kg object rises.

Part b)A smooth circular hoop with a radius of 0.900 m is placed flat on the floor. A 0.375-kg particle slides around the inside edge of the hoop. The particle is given an initial speed of 8.50 m/s. After one revolution, its speed has dropped to 5.50 m/s because of friction with the floor.What is the total number of revolutions the particle makes before stopping? Assume the friction force remains constant during the entire motion.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two masses are connected by a light string passing over a light, frictionless pulley as in...
Two masses are connected by a light string passing over a light, frictionless pulley as in Figure P5.63. The m1 = 4.75 kg object is released from rest at a point 4.00 m above the floor, where the m2 = 3.20 kg object rests. Please define all variables in solving (a) Determine the speed of each object when the two pass each other. (b) Determine the speed of each object at the moment the 4.75 kg mass hits the floor....
Two masses are connected by a light string passing over a light, frictionless pulley, as shown...
Two masses are connected by a light string passing over a light, frictionless pulley, as shown in the figure below. The object of mass m1 is released from rest at height h above the table. Use the isolated system model to answer the following. (We assume m1 > m2.) (a) Determine the speed of m2 just as m1 hits the ground. (Use any variable or symbol stated above along with the following as necessary: g.) v = (b) Find the...
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown...
Two masses are connected by a massless string, passing over a massless, frictionless pulley as shown in the diagram. Mass m1 = 5 kg, and is released from rest at a height h = 4 m above the table. Mass m2 = 3 kg, and starts at rest on the table. Ignore friction and air resistance. Take the system to be the two masses and the earth. What is the potential energy of this system, in Joules? Next, you let...
Two objects are connected to a rope, and the rope is hung over a pulley connected...
Two objects are connected to a rope, and the rope is hung over a pulley connected to the ceiling, as shown in the figure below. Two objects, labeled m1 and m2, are connected to a rope which is hung over a pulley connected to the ceiling. The pulley is of mass M and radius R. An object labeled m1 hangs suspended off the surface on the left side of the pulley. An object m2 is on the right side of...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown...
Two blocks are connected by a string that passes over a massless, frictionless pulley, as shown in the figure. Block A, with a mass mA = 2.00 kg, rests on a ramp measuring 3.0 m vertically and 4.0 m horizontally. Block B hangs vertically below the pulley. Note that you can solve this exercise entirely using forces and the constant-acceleration equations, but see if you can apply energy ideas instead. Use g = 10 m/s2. When the system is released...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the...
In the figure below, the hanging object has a mass of m1 = 0.370 kg; the sliding block has a mass of m2 = 0.900 kg; and the pulley is a hollow cylinder with a mass of M = 0.350 kg, an inner radius of R1 = 0.020 0 m, and an outer radius of R2 = 0.030 0 m. Assume the mass of the spokes is negligible. The coefficient of kinetic friction between the block and the horizontal surface...
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string....
Two blocks of mass m1 = 9.20 kg and m2 are connected by a light string. When a horizontal force F = 105 N is applied to m1 as shown in the figure below, the acceleration of the system is 3.20 m/s2 towards the left and the tension in the string connecting the two blocks is 62.0 N. The blocks are moving on a rough surface with an unknown coefficient of kinetic friction. Determine the coefficient of kinetic friction between...
Two masses, m​1=2.00kg and m​​​2=1.00kg, are connected together by a light string which passes over a...
Two masses, m​1=2.00kg and m​​​2=1.00kg, are connected together by a light string which passes over a light frictionless pulley. The coefficient of friction bewteen m​1 ​and m​​​2 ​is 0.35 and the friction between m​1 ​and the incline in negligible. If the mass, m​1, ​ is initially moving down the incline find: a) th acceleration of m​​​2​ and b) the tension in the string. The incline is a 30 degree angle and the m2​ block is on top of m1 block.
There are two weights of the same mass of 2.0 kg2.0 kg attached to a string...
There are two weights of the same mass of 2.0 kg2.0 kg attached to a string looped over a braked pulley. The left weight is lying on the floor, the right one is suspended 1.0 m1.0 m above the floor. There is another weight of mass 0.5 kg0.5 kg attached to the string 20 cm20 cm above the right weight. The string except the part around the pulley is stretched vertically. We eventually release the pulley. What is the speed...
ch 6 1: It is generally a good idea to gain an understanding of the "size"...
ch 6 1: It is generally a good idea to gain an understanding of the "size" of units. Consider the objects and calculate the kinetic energy of each one. A ladybug weighing 37.3 mg flies by your head at 3.83 km/h . ×10 J A 7.15 kg bowling ball slides (not rolls) down an alley at 17.5 km/h . J A car weighing 1260 kg moves at a speed of 49.5 km/h. 5: The graph shows the ?-directed force ??...