Question

A ball with a mass of 1.50 kg is attached to the end of a string...

A ball with a mass of 1.50 kg is attached to the end of a string that is 0.400 m in length. You swing the ball so that it swings in a vertical circle, traveling at a speed of 4.80 m/s at the top of the circle. (a) Draw the free-body diagram of the ball. Make sure you label all your vectors and clearly indicate their direction. (b) What is the tension in the string when the ball is at the topmost point of the circle?

Homework Answers

Answer #1

Concept - use Newton’s law of motion for the motion of the ball at the top of the circle to find the required value of tension as shown below***************************************************************************************************
This concludes the answers. If there is any mistake or omission, let me know immediately and I will fix it....

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A ball of mass of 10 kg is attached to one end of a string. The...
A ball of mass of 10 kg is attached to one end of a string. The other end of the string is attached to the ceiling. The ball swings and undergoes 5 full oscillations in 18.00 seconds. (a) Calculate the length of the string. _____ m (b) If the amplitude of motion of the pendulum is 15, calculate the total energy of the oscillator. _____ J
A ball swings in a vertical circle at a constant speed at the end of a...
A ball swings in a vertical circle at a constant speed at the end of a 1.5-m-long string. When the ball is at the top of the circle, the tension is 10N, at the bottom the tension is 50N. a) What is the mass of the ball? b) What is the speed of the ball?
A 3970 kg demolition ball swings at the end of a 34.4 m cable on the...
A 3970 kg demolition ball swings at the end of a 34.4 m cable on the arc of a vertical circle. At the lowest point of the swing, the ball is moving at a speed of 2.08 m/s. Determine the tension in the cable.
A 2.0 kg ball is attached to the end of a 1.6 m string and spins...
A 2.0 kg ball is attached to the end of a 1.6 m string and spins in a vertical circle. What is the weight of the ball? Find the velocity if the centripetal force is four times the weight.
A 0.0410- kg ball swings on the end of a 1.270- m-long string. On one swing...
A 0.0410- kg ball swings on the end of a 1.270- m-long string. On one swing the tension in the string is 1.177 N at the lowest point. By the second swing the ball has lost 9.3 percent of its energy. What is the ball's speed at the lowest point on the second swing?
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string,...
1. For a stationary ball of mass m = 0.200 kg hanging from a massless string, draw arrows (click on the “Shapes” tab) showing the forces acting on the ball (lengths can be arbitrary, but get the relative lengths of each force roughly correct). For this case of zero acceleration, use Newton’s 2nd law to find the magnitude of the tension force in the string, in units of Newtons. Since we will be considering motion in the horizontal xy plane,...
A 50.0 g ball swings in a vertical circle at the end of a string of...
A 50.0 g ball swings in a vertical circle at the end of a string of length 39.8 cm. If the speed of the ball at the bottom is 5.11 m/s, what is the speed of the ball at the top? B) Find the work done by gravity on the ball as it goes from bottom to top.
A small ball of mass ? is attached to the bottom end a light string of...
A small ball of mass ? is attached to the bottom end a light string of length ?, while the top of the string is fixed to the ceiling. If the ball is moving in a horizontal circle of radius ?, derive an expression for the angular speed ? of the ball in terms of only ?, ?, ? and ?. Such a system is called a conical pendulum.
A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a...
A child is swinging a 330-g ball at the end of a 69.0-cm-long string in a vertical circle. The string can withstand a tension of 15.0 N before breaking. (a) What is the tension in the string when the ball is at the top of the circle if its speed at that point is 3.50 m/s? _________ N (b) What is the maximum speed the ball can have at the bottom of the circle if the string does not break?...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of...
A 0.37 kg ball is attached to a 0.71 m long string. The other end of the string is then attached to the ceiling in order to create a pendulum. It is then drawn back such that the string makes an angle of 50 degrees relative to the ceiling and then released from rest. How fast is the pendulum traveling when the string makes an angle of 20 degrees relative to the vertical
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT