Question

**Faraday's Law III**

The armature of a small generator consists of a flat, square coil with N turns and sides with length L. The coil rotates in a magnetic field of magnitude B with a constant angular speed ω.

a) Write an expression for the flux ΦB(t) through the coil as a function of time. Assume the plane of the coil is perpendicular to the magnetic field at time t=0. (Your answer should be in terms of ω, N, B and L.)

b) Write an expression for the magnitude of the induced emf ε(t) in the coil as a function of time. (Your answer should be in terms of ω, N, B and L.)

c) In one example, the coil has 200 turns, sides with a length
of 1.85 cm and rotates in a magnetic field of 8.10×10^{−2}
T . What is the angular speed of the coil if the maximum emf
produced is 2.00×10^{−2} V?

Answer #1

Faraday's Law: A bar magnet is pushed through a coil of wire of
cross-sectional area 0.025 m2 as shown in the figure. The coil has
seven (7) turns, and the rate of change of the strength of the
magnetic field in it due to the motion of the bar magnet is 0.065
T/s. What is the magnitude of the induced emf in that coil of
wire?

A square coil of side d = 8.70 cm and N = 147 turns is within a constant and uniform magnetic field of magnitude B = 1.80 T. The field is perpendicular to the plane of the coil, as shown in the figure. If the coil is pulled out at constant speed v, that is, the net force is zero (Fnet = 0) and the coil is not accelerating; the time it takes to move the coil from '' completely...

A square coil on the side of the 7.80cm and n=127 turns it is
within a constant and uniform magnetic field of magnitude B=1.30T.
The field is perpendicular to the plane of the coil, as shown in
the figure. If the coil is pulled outward, at constant speed v;
that is, the net force is zero and the coil is not accelerating;
The time it takes to move the coil from "completely inside" to
"completely out" of the field is...

The rectangular coil, whose total resistance is 15 Ω and the
number of turns is 80, is 20 cm x 30 cm. This coil rotates at an
angle of 40 rad / s to start moving around the y-axis at the time
of t = 0 in the 1.5 T magnitude magnetic field applied along the
x-axis..
a)The greatest value of emf induced in the coil
b) magnitude of emf induced in t=1.5 seconds

17. A square coil with 37 turns and 7.9cm sides is rotating on
its axis within a constant and uniform magnetic field at 12.7
revolutions per minute. If the maximum induced voltage is 246.8V,
what will be the magnitude of that magnetic field where the coil
rotates?
Select one:
401.83 T
267.62 T
803.66 T
2410.97 T
1607.31 T

A 29-turn circular coil of radius 3.40 cm and resistance 1.00 Ω
is placed in a magnetic field directed perpendicular to the plane
of the coil. The magnitude of the magnetic field varies in time
according to the expression B = 0.010 0t + 0.040
0t2, where B is in teslas and
t is in seconds. Calculate the induced emf in the coil at
t = 4.60 s.

A circular coil with radius r and N turns rotates in a magnetic
field B with angular velocity ω. The coil is connected to a
resistor with resistance R. Find the average power delivered to the
resistor.

A 37-turn circular coil of
radius 4.60 cm and resistance 1.00 Ω is placed
in a magnetic field directed perpendicular to the plane of the
coil. The magnitude of the magnetic field varies in time according
to the expression B = 0.010
0t + 0.040 0t2,
where B is in teslas and t is in
seconds. Calculate the induced emf in the coil
at t = 4.20 s.

The armature of a 60 Hz ac generator rotates in a 0.12 T
B-field. If the area of the coils is 0.03 m2, how many
loops must the coil contain if the peak output is to be V = 270 V?
What will the current & power output (not the power loss) be if
the resistance of the coil is 0.4 ??
N = turns
I =
P =

Chapter 22, Problem 26 GO
A flat coil of wire has an area A, N turns,
and a resistance R. It is situated in a magnetic field,
such that the normal to the coil is parallel to the magnetic field.
The coil is then rotated through an angle of 90˚, so that the
normal becomes perpendicular to the magnetic field. The coil has an
area of 1.5 × 10-3 m2, 50 turns, and a
resistance of 150 Ω. During the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 6 minutes ago

asked 35 minutes ago

asked 37 minutes ago

asked 40 minutes ago

asked 45 minutes ago

asked 49 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago