Question

If 670-nm light falls on a slit 0.0475 mm wide, what is the angular width of...

If 670-nm light falls on a slit 0.0475 mm wide, what is the angular width of the central diffraction peak?

Homework Answers

Answer #1

In double slit experiment we know that:

m* = d*sin

= arcsin (m*/d)

= angular width on one side = ?

m (for central diffraction) = 1

= wavelength of light = 670 nm = 670*10^-9 m

d = width of slit = 0.0475 mm = 0.0475*10^-3 m

So,

= arcsin (1*670*10^-9/(0.0475*10^-3))

= 0.0141 rad = angular width on one side

2 = angular width of central diffraction peak = 2*0.0141 = 0.0282 rad

(If you need answer in degree, then 0.0282 rad = 1.62 deg)

Please Upvote.

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Light of wavelength 610 nm falls on a slit that is 3.80×10?3 mm wide. How far...
Light of wavelength 610 nm falls on a slit that is 3.80×10?3 mm wide. How far the first bright diffraction fringe is from the strong central maximum if the screen is 12.5 m away.
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The...
1. A slit 1.24 mm wide is illuminated by light of wavelength 530 nm . The diffraction pattern is seen on a screen 2.19 m away Find the distance between the first two diffraction minima on the same side of the central maximum in meters. 2. Monochromatic light with wavelength 539 nm fall on a slit with width 0.016 mm wide. The distance from the slit to a screen is 3.18 m. Consider a point on the screen 1.19cm from...
Light of wavelength 587.5 nm illuminates a slit, of width 0.74 mm. (a) At what distance...
Light of wavelength 587.5 nm illuminates a slit, of width 0.74 mm. (a) At what distance from the slit should a screen be placed if the first minimum in the diffraction pattern is to be 0.82mm from the central maximum? ________m (b) Calculate the width of the central maximum. _________ mm
Light of a wavelength 532 nm falls on a slit that is 2.50*10^-3 mm wide. How...
Light of a wavelength 532 nm falls on a slit that is 2.50*10^-3 mm wide. How wide is the central maxima if the screen is 20 cm away.
Light of wavelength 590 nm falls on a slit that is 3.90×10−3mm wide. Part A Estimate...
Light of wavelength 590 nm falls on a slit that is 3.90×10−3mm wide. Part A Estimate how far the first brightest diffraction fringe is from the strong central maximum if the screen is 10.0 mm away.
Plane waves of blue light, ℷ = 434 nm, falls on a single slit, then pass...
Plane waves of blue light, ℷ = 434 nm, falls on a single slit, then pass through a lens with a focal length of 85.0 cm between the screen and the slit. If the central band of the diffraction pattern on the screen has a width of 2.450 mm, find (a) the width “a” of the single slit. (b) the linear distance from the center of the screen of the first minimum of the diffraction pattern.
500-nm laser light is impinging on a single vertical slit that is 0.12 mm wide. What...
500-nm laser light is impinging on a single vertical slit that is 0.12 mm wide. What is the angular separation between the third and seventh minima (on the same side of the central maximum) of the resultant interference pattern?
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern...
Light of wavelength 492.0 nm passes through a 0.10-mm wide slit and forms a diffraction pattern on a screen 2.6 m away from the slit. Calculate the distance between the first and the third minima on the same side of the central maximum.
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a...
In a double-slit experiment, the slit separation d is 0.5 mm, and the slit width a is 0.1 mm. Consider the interference of the light from the two slits and also the diffraction of the light through each slit. (a) How many bright interference fringes are within the central peak of the diffraction envelope? (b) How many bright fringes are within either of the first side peaks of the diffraction envelope?
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls...
Light with a wavelength of 633 nm passes through a slit 6.38 ?m wide and falls on a screen 1.60 m away. Find the distance on the screen from the central bright fringe to the third dark fringe above it. ___ cm Monochromatic light passes through two slits separated by a distance of 0.0332 mm. If the angle to the third maximum above the central fringe is 3.21 degrees, what is the wavelength of the light? __ nm