Question

A long string is wrapped around a 6.1-cm-diameter cylinder, initially at rest, that is free to...

A long string is wrapped around a 6.1-cm-diameter cylinder, initially at rest, that is free to rotate on an axle. The string is then pulled with a constant acceleration of 1.6 m/s2 until 1.3 m of string has been unwound. If the string unwinds without slipping, what is the cylinder's angular speed, in rpm, at this time?

Homework Answers

Answer #1

v^2 / r is tangential/centripetal acceleration. NOT angular acceleration.
Anyhow, First you can find out how much time is spent pulling the string using this kinematics equation:
x = (1/2)* a * t^2 => t = sqrt[(2*x)/a]
then you can use the time to solve for the linear velocity of the string using this:
V = t * a
Then you can convert the linear velocity into angular velocity using this:
w = V / C where w = angular velocity and C = circumference = pi*Diameter
solving these equations you have:
t = sqrt[(2*x)/a] = sqrt[(2*1.3)/1.6] = 1.275 sec
V = t * a = 1.275 sec * 1.6 m/s^2 = 2.04 m/sec
w = V / C = V / pi*D = (2.04 m/sec) / (3.1416 * 0.061 m) = 10.65 revolution / sec
to convert to RPM multiply by (60 sec / min)
(10.65 revolution / sec)*(60 sec / min)=639 RPM

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. What's the angular velocity after 4.0 s, in radians per second? (The moment of inertia of the cylinder is 1 half M R...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to...
A solid cylinder of radius 0.5 m and mass 5.0 kg, initially at rest, starts to rotate about an axis through its center, with an angular acceleration of 0.2 rad/s^2. (a) Assuming a piece of string is wrapped around the cylinder, in such a way that the turning cylinder pulls the string onto itself, what is the total length of string wrapped on the cylinder at t= 10s? (b) What is the linear acceleration of a knot in the string...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius...
A light, nonstretching cable is wrapped around a solid cylinder with mass 88 kg and radius 0.19 m. The cylinder rotates with negligible friction about a stationary horizontal axis. We attach the free end of the cable to a block of mass 48 kg, and release the block from rest at a distance 3.9 m above the floor. As the block falls, the cable unwinds without stretching or slipping. Find the angular speed of the cylinder (in radians/s) the moment...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from...
A small, solid cylinder with mass = 20 kg and radius = 0.10 m starts from rest and rotates without friction about a fixed axis through its center of mass. A string is wrapped around the circumference of the cylinder and pulled using a constant force F. The resulting angular acceleration of the cylinder is 5.0 rad/s2. (The moment of inertia of the cylinder is 1/2 MR^2.) 1. What's the force F, in Newtons? 2. What's the angular velocity after...
A 50 kg cylinder with diameter of ,12 m has a cable wrapped around it with...
A 50 kg cylinder with diameter of ,12 m has a cable wrapped around it with a force F of 9 newtons applied to the cable so that a point on the horizontal part of the cable accelerates to the left at 0.60 m/s2. What is the magnitude of the angular acceleration of the cylinder? What is the magnitude of the torque that the cable exerts on the cylinder? What is the magnitude of the force that you exert on...
A mass hung on a string that is wrapped around an axle on a wheel produces...
A mass hung on a string that is wrapped around an axle on a wheel produces a tension in the string of 6.00 N. The axle has a radius of 0.050 m. The wheel has a mas of 4.000 kg and a radius of 0.100 m, and a thickness of 0.050m. 1)What is the torque produced by the tension on the axle, show your work. 2) Regarding the shape of the wheel as that of a uniform, solid cylinder, what...
A light string of total length L is wrapped completely around the axle of a spinning...
A light string of total length L is wrapped completely around the axle of a spinning toy top. The radius of the axle is r and the rotational inertia of the top is I. The top is initially at rest and the axle is held vertically with respect to a horizontal table. At time t = 0 a force with constant magnitude F pulls the string outwards from the axle of the top, which causes the top to rotate. After...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30...
4. A massless rope is wrapped around a uniform solid cylinder that has radius of 30 cm and mass 10 kg, as shown in the figure. The cylinder begins to unwind when it is released and allowed to rotate. (a) What is the acceleration of the center of mass of the cylinder? (b) If 90 cm of rope is unwound from the cylinder as it falls, how fast is it rotating at this instant?
A block of mass m = 2.5 kg is attached to a string that is wrapped...
A block of mass m = 2.5 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 8.8 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.42 m/s A) Find the moment of inertia of the wheel if the block rises...
A block of mass m = 1.8 kg is attached to a string that is wrapped...
A block of mass m = 1.8 kg is attached to a string that is wrapped around the circumference of a wheel of radius R = 7.6 cm . The wheel rotates freely about its axis and the string wraps around its circumference without slipping. Initially the wheel rotates with an angular speed ω, causing the block to rise with a linear speed v = 0.30 m/s Find the moment of inertia of the wheel if the block rises to...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT