Question

5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm...

5 mole of an ideal gas for which Cv,m=3/2R, initially at 20 oC and 1 atm undergoes a two-stage transformation.

For each of the stages described in the following list, Calculate the final pressure as well as q, w, ∆U, ∆H and ∆S.

a) The gas is expanded isothermally and reversibly until the volume triple.

b) then, the temperature is raised to T=2000 oC at the constant volume. Note: R= 8.314 j/mol.K or 0.082 lt.atm/mol.K, 1lt.atm= 101.325 joule

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20...
One mole of an ideal gas at 300 K is expanded adiabatically and reversibly from 20 atm to 1 atm. What is the final temperature of the gas, assuming Cv= 3/2R. Question 1 options: a) 400 K b) 250 K c)156 K d)90.5 K
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3...
1 mole of ideal gas at 270C is expanded isothermally from an initial pressure of 3 atm to afinal pressure of 1 atm in two ways: (a) reversibly and (b) against a constant external pressure of 1 atm. Calculate q, w, ΔU, ΔH and ΔS for each path.
A 2.5 mol sample of ideal gas initially at 1 atm and 25 °C is expanded...
A 2.5 mol sample of ideal gas initially at 1 atm and 25 °C is expanded isothermally (ΔT = 0) and reversibly to twice its original volume. What is the change in internal energy?
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and...
a. One mole of an ideal monoatomic gas (closed system, Cv,m) initially at 1 atm and 273.15 K experiences a reversible process in which the volume is doubled. the nature of the process is unspecified, but the following quantities are known, deltaH=2000.0J and q=1600.0J. Calculate the initial volume, the final temperature, the final pressure, deltaU, and w for the process. b. Suppose the above gas was taken from the same initial state to the same final state as in the...
1. A sample of 1.00 mol of an ideal gas at 27oC and 1.00 atm is...
1. A sample of 1.00 mol of an ideal gas at 27oC and 1.00 atm is expanded adiabatically and reversibly to 0.50 atm. Determine the values of Tf, q, w, deltaU, deltaH, deltaS, deltaG, deltaSsurr and deltaStot. Take Cv = 3/2 R.
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded...
Ten liters of a monoatomic ideal gas at 25o C and 10 atm pressure are expanded to a final pressure of 1 atm. The molar heat capacity of the gas at constant volume, Cv, is 3/2R and is independent of temperature. Calculate the work done, the heat absorbed, and the change in U and H for the gas if the process is carried out (1) isothermally and reversibly, and (2) adiabatically and reversibly. Having determined the final state of the...
3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from...
3.75 moles of ideal fas with CV,m=3/2R undergoes the transformations described in the following list from an initial state described by T=298K and P=4.50 bar. c)The gas undergoes an expansion against a constant external pressure of zero bar until the final pressure is one third its initial value. Find S
One mole of ideal gas initially at 300 K is expanded from an initial pressure of...
One mole of ideal gas initially at 300 K is expanded from an initial pressure of 10 atm to a final pressure of 1 atm. Calculate ΔU, q, w, ΔH, and the final temperature T2 for this expansion carried out according to each of the following paths. The heat capacity of an ideal gas is cV=3R/2. 1. A reversible adiabatic expansion.
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric...
Assume that one mole of a monatomic (CV,m = 2.5R) ideal gas undergoes a reversible isobaric expansion at 1 bar and the volume increases from 0.5 L to 1 L. (a) Find the heat per mole, the work per mole done, and the change in the molar internal energy, ΔUm, the molar enthalpy, ΔHm, for this process. b) What are the entropy changes ΔSm of the system and of the surroundings? Is this process spontaneous? Justify your answer.
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed...
5 moles of a monatomic ideal gas initially at 1 atm and 200 K is compressed isothermally against a constant external pressure of 2.0 atm, to a final pressure of 2.0 atm. Calculate W; Q; U; and H in Joules.