Question

Three conducting spheres with radii 3r, 2r and r are given 6q, 14q and -4q amounts...

Three conducting spheres with radii 3r, 2r and r are given 6q, 14q and -4q amounts of electric
charges respectively. If all three spheres were to touch each other, determine the nal electric
charges of each sphere in the units of q.

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Two concentric spheres, spherical conducting shells have radii a and b and equal charges +Q. What...
Two concentric spheres, spherical conducting shells have radii a and b and equal charges +Q. What is the electric potential as a function of distance r in the region a < r < b?
1. Sphere A carries a positve charge 4Q and sphere B is neutral. Initially the spheres...
1. Sphere A carries a positve charge 4Q and sphere B is neutral. Initially the spheres are separated by a distance r. The spheres briefly touch each other and move to the initial separation. What is the new charge on each sphere? Group of answer choices 1/2Q Q/2 2Q Q 2. In region of any positive point charge, other positive point charge feels Group of answer choices attractive force opposite force none of these repulsive force 3. Electric flux will...
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -6q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -6q. Sphere B carries a charge of -5q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Last, sphere C is touched to sphere B and separated from it. For the following questions, express your answers in terms of q. (a) How much charge ends up...
1. Two conducting cyllinders have radii R and 2R. They are concentric with each other (they...
1. Two conducting cyllinders have radii R and 2R. They are concentric with each other (they share the same center). The outer cyllinder has charge q and the inner cylinder has charge −q. Both cylinders have a lenght L where L >> R. Our goal is to find the capacitance of our system. (a) Using Gauss’s law, solve for the electric field between the cylinders. (b) Solve for the voltage difference between the cylinders. Hint: use a path integral. (c)...
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -6q....
Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of -6q. Sphere B carries a charge of +5q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Lastly, sphere C is touched to sphere B and separated from it. (a) How much charge ends up on sphere A? (b) How much charge ends up on sphere...
Two isolated (independent) metal spheres of radii R_1=10 cm and R_2=2 cm are charged with unknown...
Two isolated (independent) metal spheres of radii R_1=10 cm and R_2=2 cm are charged with unknown charges Q_1 and Q_2 such that the spheres have electric potentials V_1=10 Volt and V_2=-20 Volt respectively. a)Calculate the values of charges Q_1 and Q_2. b) The spheres of part a) are next connected to each other with a thin metal wire of negligible diameter and length. Calculate the new charge on each sphere and the new potential of each sphere after their connection.
Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes...
Two conducting spheres have identical radii. Initially they have charges of opposite sign and unequal magnitudes with the magnitude of the positive charge larger than the magnitude of the negative charge. They attract each other with a force of 0.269 N when separated by 0.4 m. The spheres are suddenly connected by a thin conducting wire, which is then removed. Now the spheres repel each other with a force of 0.024 N. What is the magnitude of the positive charge?...
You have four identical conducting spheres: A, B, C, and D. In each scenario below, sphere...
You have four identical conducting spheres: A, B, C, and D. In each scenario below, sphere A starts with a charge of Q, while B, C, and D start out with no net charge, and then the spheres are touched to each other and separated in the order described. Any spheres not in contact are held very far away. For each scenario, give the final charge of sphere B as a whole number fraction of Q. For example, if you...
Two conducting spheres are separated by 1.5 cm. One sphere is charged such that its total...
Two conducting spheres are separated by 1.5 cm. One sphere is charged such that its total charge is 32 nC. The other sphere is electrically neutral (has no net charge). A) Is there an apparent charge distribution on the neutral sphere due to the charged sphere? Qualitatively answer this using diagrams and terminology such as charge by induction, charge by conduction, dipole, octopole, etc. B) Imagine the spheres were allowed to touch for a brief moment and then separated back...
A) Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of...
A) Consider three identical metal spheres, A, B, and C. Sphere A carries a charge of +4q. Sphere B carries a charge of -3q. Sphere C carries no net charge. Spheres A and B are touched together and then separated. Sphere C is then touched to sphere A and separated from it. Last, sphere C is touched to sphere B and separated from it. For the following questions, express your answers in terms of q. How much charge ends up...