Question

1a) Describe in detail the three conditions needed for a system to have simple harmonic motion....

1a) Describe in detail the three conditions needed for a system to have simple harmonic motion. for simple harmonic motion to occur how must the restoring force vary with the position of the oscillating body?

1b) How do you determine the angular frequency w, the linear frequency f and the period T based on the system's differential equation of motion?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Q1: Select all true statements. The KE of a simple harmonic oscillator is maximum at the...
Q1: Select all true statements. The KE of a simple harmonic oscillator is maximum at the maximum absolute displacements. The frequency of a simple harmonic oscillator is independent of its amplitude. A harmonic oscillator, the motion of which is reduced and brought to rest over time by friction, is an example of a damped harmonic oscillator. The period of an object moving in simple harmonic motion is the number of cycles that occur per second. Young’s Modulus depends on the...
1. A(n) _____ is an example of Simple Harmonic Motion. ticking wrist-watch oscillating mass on a...
1. A(n) _____ is an example of Simple Harmonic Motion. ticking wrist-watch oscillating mass on a spring beating heart All of the above 2. _____ is a measure of the maximum displacement for oscillatory motion. Amplitude Frequency Equilibrium All of the above 3.The restoring force is calculated using the equation _____. F = kx F = -kx F = kx2 None of the above 4. The restoring force for a pendulum is proportional to the mass and inversely proportional to...
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body....
1)x = (9.2 m) cos[(5πrad/s)t + π/4 rad] gives the simple harmonic motion of a body. At t = 2.1 s, what are the (a) displacement, (b) velocity, (c) acceleration, and (d) phase of the motion? Also, what are the (e) frequency and (f) period of the motion? 2) An oscillating block-spring system takes 0.746 s to begin repeating its motion. Find (a) the period, (b) the frequency in hertz, and (c) the angular frequency in radians per second.
.A particle is oscillating in simple harmonic motion. The time required for the particle to travel...
.A particle is oscillating in simple harmonic motion. The time required for the particle to travel through one complete cycle is equal to the period of the motion, no matter what the amplitude is. But how can this be, since larger amplitudes mean that the particle travels farther? The period is constant, but the angular frequency increases, so the particle travels farther. The period is constant, but the average speed increases, so the particle travels farther. The period is constant,...
Astronomy: 1. Determine the position in the oscillation where an object in simple harmonic motion: a....
Astronomy: 1. Determine the position in the oscillation where an object in simple harmonic motion: a. has the greatest speed. b. has the greatest acceleration. c. experiences the greatest restoring force. d. experiences zero restoring force. 2. Describe simple harmonic motion, including its cause and appearance. 3. Describe how the change in a. amplitude (angle), b. length, and c. mass affect the period of the pendulum.\ 4. Do measurements including uncertainty fall within the accepted value? Which method is more...
In a Simple Harmonic Motion experiment: (Lab) Describe how the experimental period of the system will...
In a Simple Harmonic Motion experiment: (Lab) Describe how the experimental period of the system will be determined using a photogate.
Let’s think back to the lab for simple harmonic motion. Consider the setup for the simple...
Let’s think back to the lab for simple harmonic motion. Consider the setup for the simple pendulum. The length of the pendulum is 0.60 m and the bob has inertia 0.50 kg (assume mass of the string is negligible, and small angular displacements). You conduct two experiments (A and B) to investigate the physics of simple harmonic motion. For experiment A, you pull the pendulum 5 ◦ , or π 36 radians. In experiment B, the angular displacement is 10◦...
A 1500 gram mass moving in a simple harmonic motion (SHM) passes through the equilbrium point...
A 1500 gram mass moving in a simple harmonic motion (SHM) passes through the equilbrium point (x=0) with a spped of 2.60m/s. The spring compresses and reaches a maximum displacement of 11.0 cm: a. Calculate its spring constant by using consv. of energy b. Calculate the period and frequency. c. What is its velocity at T=10 seconds? d. What is the maximum force that spring exerts on the block during its motion? Where does this max force occur?
An object is in simple harmonic motion. Its maximum position is 0.5 cm from equilibrium. It...
An object is in simple harmonic motion. Its maximum position is 0.5 cm from equilibrium. It has an angular frequency of ?/2 rad/s. Initially, ?(0)=(√2)/4 ?? and ?(0)=((√2)/8)? ??/s. a) Use the values given above to write the function x(t) that describes the object’s position. b) Write down the function v(t) that describes the object’s velocity. c) Write down the function a(t) that describes the object’s acceleration. d) Draw a velocity versus time graph showing two cycles of the motion....
In studies of harmonic systems and of circular motion, radians are always used instead of degrees...
In studies of harmonic systems and of circular motion, radians are always used instead of degrees in derivations. This is ________________. an arbitrary choice or preference. necessary and related to the arc length equation. because there is not a one-to-one mapping of theta to sin(theta) when using degrees. because we like Greece more than Babylon. 4 points    QUESTION 12 Which of the following is not unique to simple harmonic systems and could apply to any harmonic system? Motion is...