Question

1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes...

1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 4.00 cm, a wavelength of 3.50 m, and a period of 6.25 s, but one has a phase shift of an angle φ. What is the phase shift (in rad) if the resultant wave has an amplitude of 4.00 cm? Hint: Use the trig identity

2.). Consider two sinusoidal sine waves traveling along a string, modeled as

y1(x, t) = (0.2 m)sin[(6 m−1)x − (4 s−1)t]

and

y1(x, t) = (0.2 m)sin[(6 m−1)x + (4 s−1)t].

What is the wave function of the resulting wave? (Hint: Use the trig identity

sin(u ± v) = sin(u) cos(v) ± cos(u) sin(v).

Use the following as necessary: x and t. Assume x and y are measured in meters and t is measured in seconds. Do not include units in your answer. Simplify your answer completely.)

3.) A transverse wave on a string is modeled with the wave function y(x, t) = (0.50 cm) sin

5.00 m−1 x − 5.00 s−1 t +

. What is the height of the string (in cm) with respect to the equilibrium position at a position

x = 3.00 m

and a time

t = 12.00 s?

(Include the sign of the value in your answer.)

4.) A copper wire has a density of

ρ = 8,920 kg/m3,

a radius of 1.40 mm, and a length L. The wire is held under a tension of 24.00 N. Transverse waves are sent down the wire.

a. What is the linear mass density of the wire (in kg/m)?

b. What is the speed of the waves through the wire (in m/s)?

Please respond to as many as possible. I have been trying for weeks. Thaanks!!!!!

Homework Answers

Answer #1

as per guidelines i can write only one

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider two sinusoidal sine waves traveling along a string, modeled as y1(x, t) = (0.4 m)sin[(7...
Consider two sinusoidal sine waves traveling along a string, modeled as y1(x, t) = (0.4 m)sin[(7 m−1)x − (5 s−1)t] and y1(x, t) = (0.4 m)sin[(7 m−1)x + (5 s−1)t]. What is the wave function of the resulting wave? (Hint: Use the trig identity sin(u ± v) = sin(u) cos(v) ± cos(u) sin(v). Use the following as necessary: x and t. Assume x and y are measured in meters and t is measured in seconds. Do not include units in...
Two transverse sinusoidal waves combining in a medium are described by the wave functions y1 =...
Two transverse sinusoidal waves combining in a medium are described by the wave functions y1 = 1.00 sin π(x + 0.500t) y2 = 1.00 sin π(x − 0.500t) where x, y1, and y2 are in centimeters and t is in seconds. Determine the maximum transverse position of an element of the medium at the following positions. (a) x = 0.130 cm |ymax| = ? (b) x = 0.460 cm |ymax| = ? (d) Find the three smallest values of x...
Two sinusoidal waves in a string are defined by the wave functions y1 = 1.60 sin...
Two sinusoidal waves in a string are defined by the wave functions y1 = 1.60 sin (15.0x − 33.0t) y2 = 1.60 sin (28.0x − 42.0t) where x, y1, and y2 are in centimeters and t is in seconds. (a) What is the phase difference between these two waves at the point x = 5.00 cm at t = 2.00 s? (Your answer should be between 0° and 360°.) Your response differs from the correct answer by more than 10%....
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing a net wave y´(x, t) = (1.90 mm) sin(22.0x - 6.80t + 0.940 rad), with x in meters and t in seconds. What are (a) the wavelength λ of the two waves, (b) the phase difference between them, and (c) their amplitude ym?
A transverse sinusoidal wave is moving along a string in the positive direction of an x...
A transverse sinusoidal wave is moving along a string in the positive direction of an x axis with a speed of 93 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 16 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave?...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing...
Two sinusoidal waves, identical except for phase, travel in the same direction along a string, producing a net wave y´(x, t) = (4.10 mm) sin(49.0x - 3.00t + 0.850 rad), with x in meters and t in seconds. What are (a) the wavelength λ of the two waves, (b) the phase difference between them, and (c) their amplitude ym? I need b and c. and the answers ARE NOT 0.85 rad 0.0041 m. But I DO need the answer in...
A transverse sinusoidal wave is moving along a string in the positive direction of an x-axis...
A transverse sinusoidal wave is moving along a string in the positive direction of an x-axis with a speed of 89 m/s. At t = 0, the string particle at x = 0 has a transverse displacement of 4.0 cm from its equilibrium position and is not moving. The maximum transverse speed of the string particle at x = 0 is 18 m/s. (a) What is the frequency of the wave? (b) What is the wavelength of the wave? If...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 39.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? m (b) What is the phase constant? rad (c) What is the maximum transverse speed...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels...
A transverse sinusoidal wave on a string has a period T = 15.0 ms and travels in the negative x direction with a speed of 30.0 m/s. At t = 0, a particle on the string at x = 0 has a transverse position of 2.00 cm and is traveling downward with a speed of 4.00 m/s. (a) What is the amplitude of the wave? (b) What is the phase constant? (c) What is the maximum transverse speed of the...
The wave functions of two waves traveling in the same direction are given below. The two...
The wave functions of two waves traveling in the same direction are given below. The two waves have the same frequency, wavelength, and amplitude, but they differ in their phase constant. y1 (x,t) = 2 sin⁡(2πx ‒ 20πt), and y2 (x,t) = 2 sin(2πx ‒ 20πt + φ), a)where, y is in centimetres, x is in meters, and t is in seconds. Which of the following wave functions represents the resultant wave due to the interference between the two waves:...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT