Question

A two-slit pattern is viewed on a screen 1.00 mm from the slits. If the two...

A two-slit pattern is viewed on a screen 1.00 mm from the slits.

If the two third-order minima are 17.0 cmcm apart, what is the width of the central bright fringe?

Homework Answers

Answer #1

Distance of screen from the slits, L = 1 m

two third order minima = 17 cm = 0.17m

Position of third order minima from the center point is t = 5L/2d

distance between the two third order minima is

y = 2 x (5L/2d)

y = 5L/d...................................................................................eq1

width of the central bright fringe is w = L/d............................eq2

using eq1 and eq2 for solving w

w = y/5

w = 17/5

w = 3.4 cm

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Find the width of the central bright fringe in a two-slit experiment on a screen located...
Find the width of the central bright fringe in a two-slit experiment on a screen located 1.5 m from the slits, knowing that the two third-order minima are 20 cm apart. Show steps
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on...
A double slit interference pattern is created by two narrow slit spaced 0.025 mm apart on a screen 2 m away from the slits. a. If the seventh bright fringe on the detector is 10 cm away from the central fringe, what is the wavelength of light (in nm) used in this experiment? b. What is the angle of the diffraction order?
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits...
Two narrow slits are used to produce a double-slit interference pattern with monochromatic light. The slits are separated by 8 mm, and the interference pattern is projected onto a screen 7 m away from the slits. The central bright fringe is at a certain spot on the screen. Using a ruler with one end placed at the central fringe, you move along the ruler passing by two more bright fringes and find that the next bright fringe is 23.5 mm...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light...
A double-slit experiment produces an interference pattern on a screen 2.8 m away from slits. Light of wavelength λ= 460 nm  falls on the slits from a distant source. The distance between adjacent bright fringes is 6.2 mm. A) Find the distance between the two slits B) Determine the distance to the 6th order dark fringe from the central fringe
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which...
1-Two slits are placed 0.2 mm apart and project an intereference pattern on a screen which is 1 meter away. If the distance between the central and the 3rd fringe is 7.5 mm on the screen what is the wavelength of the light used? 2-In a double slit experiment where light of wavelength of 0.00006 cm is used, the distance of the screen from the slits is 1.0 meter and the slit separation is 0.1 mm. What is the spacing...
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits....
A double-slit experiment produces an interference pattern on a screen 2.8 m m away from slits. Light of wavelength λ= 520 nm n m  falls on the slits from a distant source. The distance between adjacent bright fringes is 7.2 mm m m . Part A Find the distance between the two slits. Express your answer using three significant figures. Part B Determine the distance to the 5th order dark fringe from the central fringe. Express your answer using...
Light of wavelength 670 nm falls on two slits and produces an interference pattern in which...
Light of wavelength 670 nm falls on two slits and produces an interference pattern in which the third-order bright fringe is 45 mm from the central fringe on a screen 3.3 m away. What is the separation of the two slits?
a) A double slit experiment is with 450 nm light and two narrow slits which are...
a) A double slit experiment is with 450 nm light and two narrow slits which are 0.5 mm apart. At what angle to the straight through beam will be one observe: i. the third order bright fringe. ii. the second minimum from the central maximum. b) By drawing appropriate diagrams, show the differences between intensity or pattern for double slits intereference and single slit diffration
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.350 mm wide. The diffraction pattern is observed on a screen 2.55 m away. Define the width of a bright fringe as the distance between the minima on either side. a) What is the width of the central bright fringe? b) What is the width of the first bright fringe on either side of the central one?
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm...
Red light of wavelength 633 nm from a helium-neon laser passes through a slit 0.400 mm wide. The diffraction pattern is observed on a screen 3.25 m away. Define the width of a bright fringe as the distance between the minima on either side. Part A: What is the width of the central bright fringe? Part B: What is the width of the first bright fringe on either side of the central one?
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT