Question

A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of...

A light spring obeys Hooke's law. The spring's unstretched length is 31.5 cm. One end of the spring is attached to the top of a doorframe and a weight with mass 8.00 kg is hung from the other end. The final length of the spring is 43.5 cm.

(a)

Find its spring constant (in N/m).

N/m

(b)

The weight and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a force of 160 N. Find the length (in m) of the spring in this situation.

m

(c)

What If? What would be the length (in m) of the spring if it were now attached to the vertical portion of the doorframe and stretched horizontally by a single person exerting a force of 160 N?

m

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Hooke's law describes a certain light spring of unstretched length 38.0 cm. When one end is...
Hooke's law describes a certain light spring of unstretched length 38.0 cm. When one end is attached to the top of a door frame and a 6.00-kg object is hung from the other end, the length of the spring is 42.5 cm. (a) Find its spring constant. _________ kN/m (b) The load and the spring are taken down. Two people pull in opposite directions on the ends of the spring, each with a force of 180 N. Find the length...
05.3 Consider a spring that does not obey Hooke's law very faithfully. One end of the...
05.3 Consider a spring that does not obey Hooke's law very faithfully. One end of the spring is fixed. To keep the spring stretched or compressed an amount x, a force along the x-axis with xcomponent Fx =kx – bx2 + cx3 must be applied to the free end, where k = 130 N/m, b = 660 N/m2 , and c = 16000 N/m3 . Note that x > 0 when the spring is stretched and x < 0 when...
A spring with spring constant k = 45 N/m and unstretched length of L0 = 1...
A spring with spring constant k = 45 N/m and unstretched length of L0 = 1 is attached to the ceiling. A block of mass m = 2.5 kg is hung gently on the end of the spring. 1) How far does the spring stretch? .545 m 2) Now the block is pulled down until the total amount the spring is stretched is twice the amount found in the above question. The block is then pushed upward with an initial...
1) You put a 51.7 gram mass on a spring, set it in motion with a...
1) You put a 51.7 gram mass on a spring, set it in motion with a small amplitude, and count 21 cycles. Those 21 cycles took 3.42 seconds. What is kSHM? 2) Use Hooke's Law for this (F = - k s ): Where F is the spring's restoring force; k is the spring constant; and s is the stretch. The negative sign means the spring's restoring force is opposite the stretch direction. You have a plot from weight [N]...
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position....
A 4.00 kg block hangs from a spring, extending it 16.0 cm from its unstretched position. (a.) What is the spring constant? = 245 N/m (b.) The block is removed, and a 0.500 kg mass is hung from the same spring. If the spring is then stretched and released, what is its period of oscillation? =.284 sec (c.) Write the unique equation of motion y(t) for the motion of the mass in part (b), assuming the mass was initially pulled...
A 33.0 cm long spring is hung vertically from a ceiling and stretches to 40.9 cm...
A 33.0 cm long spring is hung vertically from a ceiling and stretches to 40.9 cm when a 7.00 kg mass is hung from its free end. (a) Find the spring constant (in N/m). (b) Find the length of the spring (in cm) if the 7.00 kg weight is replaced with a 175 N weight.
A uniform plank of mass 2.53 kg and length 21.5 cm is pivoted at one end....
A uniform plank of mass 2.53 kg and length 21.5 cm is pivoted at one end. A spring of force constant 403 N/m is attached to the center of the plank, as shown in the figure. The height of the pivot has been adjusted so that the plank will be in equilibrium when it is horizontally oriented. Find the period of small oscillation about the equilibrium point. Answer in units of s.
You sign up for a bungee jump off a tall bridge. A thick rope with a...
You sign up for a bungee jump off a tall bridge. A thick rope with a fixed length of 16.0 m is tied to the bridge, and a bungee cord with an unstretched length of 8.00 m is then connected to the rope. The other end of the bungee cord is attached to your legs. You step off the bridge, falling from rest. The bungee cord does not start exerting any force on you until you have fallen a distance...
A spring with spring constant 32 N/m is attached to the ceiling, and a 4.7-cm-diameter, 1.2...
A spring with spring constant 32 N/m is attached to the ceiling, and a 4.7-cm-diameter, 1.2 kg metal cylinder is attached to its lower end. The cylinder is held so that the spring is neither stretched nor compressed, then a tank of water is placed underneath with the surface of the water just touching the bottom of the cylinder. When released, the cylinder will oscillate a few times but, damped by the water, quickly reach an equilibrium position. When in...
A 0.400-kg block is attached to a horizontal spring that is at its equilibrium length, and...
A 0.400-kg block is attached to a horizontal spring that is at its equilibrium length, and whose force constant is 24.0 N/m . The block rests on a frictionless surface. A 6.00×10−2-kg wad of putty is thrown horizontally at the block, hitting it with a speed of 2.20 m/s and sticking. Part A How far does the putty-block system compress the spring? in cm
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT