Question

A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic...

A 0.019 kg block on a horizontal frictionless surface is attached to a string whose spring/force/elastic constant k is 120 N/m. The block is pulled from its equilibrium position at x=0 m to a displacement x=+0.080 m and is released from rest. The block then executes simple harmonic motion along x-axis (horizontal). When the displacement is x=0.051 m, what is the kinetic energy of the block in J?

Homework Answers

Answer #1

Mass of block m= 0.019kg

Spring constant k = 120N/m

Maximum compression A= 0.08m

Potential energy in spring of x distance u = kx2/2

Now using energy conservation

Total energy of block when it is compressed to

A = 0.08m

Potential energy of spring u = kA2/2

Kinetic energy k = 0 as velocity at A(maximum compression) is zero.

So Etotal = kA2/2

Now energy at x= 0.051

U = kx2/2

Let kinetic energy at this point is w

Etotal = kx2/2 + w

As energy is conserved Etotal is constant.

kx2/2 + w = kA2/2

120×(0.051)2/2 + w = 120×(0.08) 2/2

0.156 + w = 0.384

W= 0.228J

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A block rests on a frictionless horizontal surface and is attached to a spring. When set...
A block rests on a frictionless horizontal surface and is attached to a spring. When set into simple harmonic motion, the block oscillates back and forth with an angular frequency of 8.9 rad/s. The drawing shows the position of the block when the spring is unstrained. This position is labeled ''x = 0 m.'' The drawing also shows a small bottle located 0.080 m to the right of this position. The block is pulled to the right, stretching the spring...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s?...
A block is attached to a horizontal spring with a spring constant of 5.0 kg s? 2. The block is displaced 0.5m from equilibrium and released (see the figure below). The block executes simple harmonic motion with a period of 4.0 s .Assuming that the block is moving on a frictionless surface, and the spring is of negligible mass. a. Calculate the mass of the block? b. Determine the velocity of the block 1.0 seconds after it is released? The...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a...
A 0.55 kg block rests on a frictionless horizontal countertop, where it is attached to a massless spring whose k-value equals 23.0 N/m. Let x be the displacement, where x = 0 is the equilibrium position and x > 0 when the spring is stretched. The block is pushed, and the spring compressed, until xi = −4.00 cm. It then is released from rest and undergoes simple harmonic motion. (a) What is the block's maximum speed (in m/s) after it...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring...
1.A 1.10 kg block sliding on a horizontal frictionless surface is attached to a horizontal spring with k = 490 N/m. Let x be the displacement of the block from the position at which the spring is unstretched. At t = 0 the block passes through x = 0 with a speed of 3.40 m/s in the positive x direction. What are the (a) frequency and (b) amplitude of the block's motion 2.A vertical spring stretches 13 cm when a...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and...
A block rests on a horizontal, frictionless surface. A string is attached to the block, and is pulled with a force of 48.0 N at an angle θ above the horizontal. After the block is pulled through a distance of 16.0 m its speed is v = 2.10 m/s, and 40.0 J of work has been done on it.What is the mass of the block? (Answer in kg)
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring...
A 28 kg block on a horizontal surface is attached to a horizontal spring of spring constant k = 4.8 kN/m. The block is pulled to the right so that the spring is stretched 7.2 cm beyond its relaxed length, and the block is then released from rest. The frictional force between the sliding block and the surface has a magnitude of 37 N. (a) What is the kinetic energy of the block when it has moved 1.6 cm from...
. A block of mass 2.00 kg is attached to a horizontal spring with a force...
. A block of mass 2.00 kg is attached to a horizontal spring with a force constant of 500 N/m. The spring is stretched 5.00 cm from its equilibrium position and released from rest. Use conservation of mechanical energy to determine the speed of the block as it returns to equilibrium (a) if the surface is frictionless (b) if the coefficient of kinetic friction between the block and the surface is 0.350
A block with a mass of 0.250 kg is placed on a horizontal frictionless surface, and...
A block with a mass of 0.250 kg is placed on a horizontal frictionless surface, and then attached to a spring with a spring constant of 5.00 N/m. The system is then set into motion, so that the block experiences simple harmonic motion with an amplitude of 18.0 cm. (c) Find the smallest amount of time it takes the block to move from a position of 18.0 cm from equilibrium to a position that is just 7.00 cm from equilibrium.
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring...
A block of mass m = 1.5 kg is attached to a massless, frictionless vertical spring and stretches the spring by an amount y0 = 0.15m a)find the spring constant k of the spring b) the block is then pulled down by an additional 0.05m below its equilibrium position and is released. express the position of the block during its resulting simple harmonic motion using the equation y(t) = ymcos(wt+@). c) find the maximum acceleration fo the block A(m). d)...
A 4.37 kg block free to move on a horizontal, frictionless surface is attached to one...
A 4.37 kg block free to move on a horizontal, frictionless surface is attached to one end of a light horizontal spring. The other end of the spring is fixed. The spring is compressed 0.117 m from equilibrium and is then released. The speed of the block is 1.01 m/s when it passes the equilibrium position of the spring. The same experiment is now repeated with the frictionless surface replaced by a surface for which uk = 0.345. Determine the...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT