Question

A liquid of density 1.33 × 103 kg/m3 flows steadily through a pipe of varying diameter and height. At location 1 along the pipe the flow speed is 9.15 m/s and the pipe diameter is 11.5 cm. At location 2 the pipe diameter is 17.3 cm. At location 1 the pipe is 9.89 m higher than it is at location 2. Ignoring viscosity, calculate the difference between the fluid pressure at location 2 and the fluid pressure at location 1.

Answer #1

Given: density of liquid x = 1.33 x 103 kg/m3,

at location1: flow speed s1 = 9.15 m/s, pipe diameter d1 = 11.5 cm = 0.115 m,

at location 2 : pipe diameter d2= 17.3 cm= 0.173 m,

**The equation of continuity**

The equation of continuity states that for an incompressible fluid flowing in a tube of varying cross-section, the mass flow rate is the same everywhere in the tube. The mass flow rate is simply the rate at which mass flows past a given point, so it's the total mass flowing past divided by the time interval. The equation of continuity can be reduced to:

as per given question density is constant.

A liquid of density 1.19 × 103 kg/m3 flows steadily through a
pipe of varying diameter and height. At location 1 along the pipe
the flow speed is 9.79 m/s and the pipe diameter is 10.7 cm. At
location 2 the pipe diameter is 14.1 cm. At location 1 the pipe is
8.75 m higher than it is at location 2. Ignoring viscosity,
calculate the difference between the fluid pressure at location 2
and the fluid pressure at location 1.

A liquid of density 1.37 × 103 kg/m3 flows steadily through a
pipe of varying diameter and height. At location 1 along the pipe
the flow speed is 9.47 m/s and the pipe diameter is 11.1 cm. At
location 2 the pipe diameter is 17.1 cm. At location 1 the pipe is
9.37 m higher than it is at location 2. Ignoring viscosity,
calculate the difference between the fluid pressure at location 2
and the fluid pressure at location 1.

A liquid of density 1.13 × 103 kg/m3 flows steadily through a
pipe of varying diameter and height. At location 1 along the pipe
the flow speed is 9.77 m/s and the pipe diameter is 11.3 cm. At
location 2 the pipe diameter is 14.5 cm. At location 1 the pipe is
8.43 m higher than it is at location 2. Ignoring viscosity,
calculate the difference between the fluid pressure at location 2
and the fluid pressure at location 1.

A liquid of density 1150 kg/m3 flows steadily through a pipe of
varying diameter and height. At Location 1 along the pipe, the flow
speed is 9.99 m/s and the pipe diameter ?1 is 12.3 cm . At Location
2, the pipe diameter ?2 is 17.9 cm . At Location 1, the pipe is
Δ?=8.79 m higher than it is at Location 2. Ignoring viscosity,
calculate the difference Δ? between the fluid pressure at Location
2 and the fluid pressure...

A liquid of density 1270 kg/m3 flows steadily through
a pipe of varying diameter and height. At Location 1 along the
pipe, the flow speed is 9.81 m/s and the pipe diameter d1 is 11.3
cm. At Location 2, the pipe diameter d2 is 17.1 cm. At Location 1,
the pipe is Δy=9.59 m higher than it is at Location 2. Ignoring
viscosity, calculate the difference ΔP in units of Pa between the
fluid pressure at Location 2 and the...

A liquid of density 1270 kg/m31270 kg/m3 flows steadily through
a pipe of varying diameter and height. At Location 1 along the
pipe, the flow speed is 9.61 m/s9.61 m/s and the pipe diameter ?1d1
is 10.7 cm10.7 cm. At Location 2, the pipe diameter ?2d2 is 16.1
cm16.1 cm. At Location 1, the pipe is Δ?=8.31 mΔy=8.31 m higher
than it is at Location 2. Ignoring viscosity, calculate the
difference Δ?ΔPbetween the fluid pressure at Location 2 and the...

A liquid of density 1150 kg/m31150 kg/m3 flows steadily through
a pipe of varying diameter and height. At Location 1 along the
pipe, the flow speed is 9.83 m/s9.83 m/s and the pipe diameter ?1d1
is 11.3 cm.11.3 cm. At Location 2, the pipe diameter ?2d2 is 15.5
cm.15.5 cm. At Location 1, the pipe is Δ?=8.17 mΔy=8.17 m higher
than it is at Location 2. Ignoring viscosity, calculate the
difference Δ?ΔP between the fluid pressure at Location 2 and...

1.) A liquid of density 1390 km/m^3 flows steadily through a
pipe of varying diameter and height. At Location 1 along the pipe,
the flow speed is 9.31 m/s and the pipe d1 diameter is 10.3cm . At
Location 2, the pipe diameter d2 is 17.5 cm . At Location 1, the
pipe is triangle y= 9.31m higher than it is at Location 2. Ignoring
viscosity, calculate the difference between the fluid pressure at
Location 2 and the fluid pressure...

Water, with a density of ?=1185 kg/m3 , flows in a horizontal
pipe. In one segment of the pipe, the flow speed is ?1=7.13 m/s .
In a second segment, the flow speed is ?2=1.57 m/s . What is the
difference between the pressure in the second segment ( ?2 ) and
the pressure in the first segment ( ?1 )?
P2-P1 =
A liquid of density 1110 kg/m3 flows steadily through a pipe of
varying diameter and height. At...

A liquid of density 1394 kg/m3 flows with speed 2.48 m/s into a
pipe of diameter 0.21 m . The diameter of the pipe decreases to
0.05 m at its exit end. The exit end of the pipe is 5.43 m lower
than the entrance of the pipe, and the pressure at the exit of the
pipe is 1.5 atm. Applying Bernoulli’s principle, what is the
pressure P1 at the entrance end of the pipe? Assume the viscosity
of the...

ADVERTISEMENT

Get Answers For Free

Most questions answered within 1 hours.

ADVERTISEMENT

asked 2 minutes ago

asked 13 minutes ago

asked 14 minutes ago

asked 32 minutes ago

asked 52 minutes ago

asked 53 minutes ago

asked 56 minutes ago

asked 1 hour ago

asked 1 hour ago

asked 2 hours ago

asked 2 hours ago

asked 2 hours ago