Question

1-How many electrons flow through a point in a wire in3.00 s if there is a...

1-How many electrons flow through a point in a wire in3.00 s if there is a constant current of I = 4.00 A ?

2-The current of an electron beam has a measured current of I = 50.00 μA with a radius of 1.00 mm2 . What is the magnitude of the current density of the beam?

3-Consider a wire of a circular cross-section with a radius of R = 3.00 mm . The magnitude of the current density is modeled as J = cr2 = 5.00 × 106 (A/m4)r2 . What is the current through the inner section of the wire from the center to r = 0.5R ?

Homework Answers

Answer #1

Hope it helps...
Please give me a thumbs up...
And comment if you have any doubts..

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
Consider a wire of a circular cross-section with a radius of R = 3.30 mm. The...
Consider a wire of a circular cross-section with a radius of R = 3.30 mm. The magnitude of the current density is modeled as J = cr2 = 7.25 ✕ 106 A/m4 r2. What is the current (in A) through the inner section of the wire from the center to r = 0.5R?
The magnitude J of the current density in a certain wire with a circular cross section...
The magnitude J of the current density in a certain wire with a circular cross section of radius R = 2.70 mm is given by J = (5.50 ✕ 108)r2, with J in amperes per square meter and radial distance r in meters. What is the current through the outer section bounded by r = 0.510R and r = R?
The point of this problem is to show how slowly electrons travel on average through a...
The point of this problem is to show how slowly electrons travel on average through a thin wire, even for large values of current. A wire made from copper with a cross-section of diameter 0.740 mm carries a current of 13.0 A. Calculate the "areal current density"; in other words, how many electrons per square meter per second flow through this wire? (Enter your answer without units.) The density of copper is 8.99 g/cm3, and its atomic mass is 63.8....
Calculate the average drift speed of electrons traveling through a copper wire with a crosssectional area...
Calculate the average drift speed of electrons traveling through a copper wire with a crosssectional area of 30 mm2 when carrying a current of 30 A (values similar to those for the electric wire to your study lamp). Assume one electron per atom of copper contributes to the current. The atomic mass of copper is 63.5 g/mol and its density is 8.93 g/cm3 . Avogadro’s number is 6.022 × 1023 and the fundamental charge is 1.602 × 10−19 C. Answer...
1. The electron drift speed in a 3.00-mm-diameter gold wire is 6.00 × 10−5 m/s. How...
1. The electron drift speed in a 3.00-mm-diameter gold wire is 6.00 × 10−5 m/s. How long does it take 1 mole of electrons to flow through a cross-section of the wire?
Solid cylindrical wire of infinitely length has radius R. I, a current, is flowing in the...
Solid cylindrical wire of infinitely length has radius R. I, a current, is flowing in the z direction. Through the cross section of the wire, the current flow is uniformly distributed. 1. Find the current density vector J in the wire. Show your steps and be clear on the formulas. 2. What's the magnitude of the magnetic field at points outside the wire? Use Ampere’s Law. 3. What's the magnitude of the magnetic field at points inside the wire? Again,...
A copper wire of cross sectional area A=1.7 mm2 and Lenght L=1 m carries a current...
A copper wire of cross sectional area A=1.7 mm2 and Lenght L=1 m carries a current of I=6.4 A at the temperature of T1= 20 0C. a) How many electrons pass through a cross section of the wire in each second? b) What is the resistance of the wire ? c) What is the potential difference between the ends of the wire? d) What is the resistance of the wire at the temperature of T2= 100 0C? (r=1.7x10-8 W.m, a=7x10-3...
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic...
A proton is accelerated through a potential difference of 10 kV and enters a uniform magnetic field at right angles. Calculate the value of the magnetic flux density necessary to move the proton in a circular path of radius 10 mm. [6] A piece of wire of cross-sectional area A and resistivity ρ is bent into a circular loop of radius r and placed in a magnetic field with its plane at right angles to the field. Determine the magnitude...
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes...
1.). Two sinusoidal waves are moving through a medium in the same direction, both having amplitudes of 4.00 cm, a wavelength of 3.50 m, and a period of 6.25 s, but one has a phase shift of an angle φ. What is the phase shift (in rad) if the resultant wave has an amplitude of 4.00 cm? Hint: Use the trig identity 2.). Consider two sinusoidal sine waves traveling along a string, modeled as y1(x, t) = (0.2 m)sin[(6 m−1)x...
A wire has a mass of m = 10 gram and a length of L =...
A wire has a mass of m = 10 gram and a length of L = 50.0 cm is suspended by a pair of flexible springs in a uniform magnetic field of magnitude 0.50 T. What are the magnitude and direction (left or right) of the current required to remove the tension in the supporting springs? g = 10 m/s^2 Lütfen birini seçin: A. 4.0 A, left direction B. 0.4 A, right direction C. 2.5 A, right direction D. 4.0...
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT