Question

A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner...

A spherical capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has a radius of rarar_a = 12.5 cmcm , and the outer sphere has a radius of rbrbr_b = 14.9 cmcm . A potential difference of 120 VV is applied to the capacitor.

Part A

What is the capacitance of the capacitor?

Use ϵ0 = 8.85×10−12 F/mF/m for the permittivity of free space.

Part B

What is the magnitude E1 of the electric field E at radius r=r= 12.6 cmcm , just outside the inner sphere?

E1=

Part C

E2=

What is the magnitude of E1 at r=r= 14.7 cmcm , just inside the outer sphere?

Homework Answers

Know the answer?
Your Answer:

Post as a guest

Your Name:

What's your source?

Earn Coins

Coins can be redeemed for fabulous gifts.

Not the answer you're looking for?
Ask your own homework help question
Similar Questions
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 10.0 cm, and the outer sphere has radius 15.0 cm. A potential difference of 130.0 V is applied to the capacitor. Part A What is the energy density at rr= 10.1 cm, just outside the inner sphere? Express your answer in joules per meter cubed. Part B What is the energy density at rr = 14.9 cm, just inside the outer sphere?...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere...
A capacitor is formed from two concentric spherical conducting shells separated by vacuum. The inner sphere has radius 11.0 cm , and the outer sphere has radius 15.5 cm cm . A potential difference of 110 V is applied to the capacitor. 1-What is the energy density at r= 11.1 cm , just outside the inner sphere? 2-What is the energy density at r = 15.4 cm , just inside the outer sphere? 3-For a parallel-plate capacitor the energy density...
1a) If a capacitor were made from two coaxial, concentric spheres with the inner sphere having...
1a) If a capacitor were made from two coaxial, concentric spheres with the inner sphere having a radius of r, and the outer sphere having a radius of 1.5r, what would be the capacitance of this setup? Remember, capacitance is defined as C = Q/V . You may use r=1.5cm 1b) What would your answer to the previous question be if the space between the spheres were filled with styrofoam, κ = 4 ?
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a...
The space between two concentric conducting spherical shells of radii b = 1.70 cm and a = 1.00 cm is filled with a substance of dielectric constant κ = 15.1. A potential difference V = 65.0 V is applied across the inner and outer shells. Determine (a) the capacitance of the device, (b) the free charge q on the inner shell, and (c) the charge q induced along the surface of the inner shell.
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and...
Consider two neutral, hollow conducting spherical shells. The inner shell will be denoted by S1 and the outer shell will be denoted by S2. The inner radius of S1 is r1. The outer radius of S1 is r2. The inner radius of S2 is r3 and the outer radius of S2 is r4. S1 and S2 are concentric with S1 contained within S2. S1 has a total charge of Q1 and S2 has a total charge of Q2. Find: a)...
A spherical capacitor is composed of two thin, concentric conducting shells of radii R1 = 4.0cm...
A spherical capacitor is composed of two thin, concentric conducting shells of radii R1 = 4.0cm and R2 = 8.0cm. The plates are connected to a 12.0 V battery and are fully charged. a. Derive the equation for the capacitance and use it to determine the capacitance. b. Determine the total charge on the capacitor. c. The space between the plates is now filled with neoprene, increasing the total charge to 7.1E-10 C. What is the dielectric constant of neoprene?...
A spherical capacitor is constructed using a solid sphere of radius a as the inner conductor...
A spherical capacitor is constructed using a solid sphere of radius a as the inner conductor and a thin spherical shell of radius c as the outer conductor. The region in between is partially filled, with a dielectric (constant k) filling the space from b < r < c. Use the method outlined in the book and in class to find an expression for the capacitance of this capacitor. Use careful sketches and explain each step of your work.
a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical...
a) By using Gauss’s law, find the electric field inside, outside and inbetween two concentric spherical metal shells, assuming that the inner shell, of radius a, carries a charge of -Q and the outer shell, of radius b, carries a charge of Q. b) By making use of the result in part (a), find the energy stored in the system made of two concentric spherical metal shells. c) By using the result in part (a) find the electric potential difference...
A small conducting spherical shell with inner radius a and outer radius b is concentric with...
A small conducting spherical shell with inner radius a and outer radius b is concentric with a larger conducting spherical shell with inner radius c and outer radius d. The inner shell has a total charge of -1q and the outer shell has a total charge of +3q. Select True or False for the following statements. True False The radial component of the electric field in the region r > dis given by +2q/(4πε0r2). True False The total charge on...
Flux and nonconducting shells. A charged particle is suspended at the center of two concentric spherical...
Flux and nonconducting shells. A charged particle is suspended at the center of two concentric spherical shells that are very thin and made of nonconducting material. Figure (a) shows a cross section. Figure (b) gives the net flux ? through a Gaussian sphere centered on the particle, as a function of the radius r of the sphere. The scale of the vertical axis is set by ?s = 19.0
ADVERTISEMENT
Need Online Homework Help?

Get Answers For Free
Most questions answered within 1 hours.

Ask a Question
ADVERTISEMENT